
ScanCode-Toolkit

AboutCode.org authors and contributors

Apr 12, 2024

CONTENTS

1 Are you new to Scancode-Toolkit? 2
1.1 Table of Contents . 2
1.2 Try ScanCode Toolkit . 3
1.3 Installing ScanCode . 3
1.4 Learn more about ScanCode Toolkit . 5
1.5 Contribute . 5

2 Getting Started 8
2.1 Getting Started . 8

3 Command Line Options Reference 18
3.1 Command Line Interface Reference . 18

4 Tutorials 124
4.1 Basic Tutorials . 124

5 How-To Documents 140
5.1 How-To Guides . 140

6 Contribute To ScanCode 148
6.1 Contribute . 148

7 Plugins Documentation 168
7.1 Plugins . 168

8 Miscellaneous Documents 176
8.1 Miscellaneous . 176

9 Reference Documents 179
9.1 Reference Docs . 179

10 Indices and Tables 217
10.1 Something Missing? . 217

i

ScanCode-Toolkit

Welcome to ScanCode Toolkit Documentation!

If you are new to ScanCode Toolkit, start here:

CONTENTS 1

CHAPTER

ONE

ARE YOU NEW TO SCANCODE-TOOLKIT?

This is the perfect place to start, if you are new to ScanCode-Toolkit. Have a quick look at the table of contents
below, as these are the main sections you might need help on. These sections have extensive links to other important
documentation pages, and make sure you go through them all.

1.1 Table of Contents

1. Try ScanCode Toolkit

• Before you start using ScanCode

• Installing ScanCode

• Scan a Codebase

• Use ScanCode Better

• All Tutorials/How-Tos

• ScanCode Versions

2. Learn more about ScanCode Toolkit

• CLI Reference

• How Scancode Works

• Plugins

3. Contribute

• General Information

• Contribute Code

• Good First Issues

• Add new Functionality/Enhancement to ScanCode

• Update our Documentation

• Participate in GSoC/GSoD

2

ScanCode-Toolkit

1.2 Try ScanCode Toolkit

This section is about using the ScanCode Toolkit, i.e. Performing a scan on a codebase/files to determine their license,
copyrights and other information, according to your requirements.

1. The Scan a Codebase section helps you with configuring your virtual environment, installing Scancode and
performing a basic scan, and subsequently visualize the results.

2. The Use ScanCode Better section helps you customize the scan according to your requirements, and better un-
derstand the advanced features you can use.

3. The All Tutorials/How-Tos is essentially an exhaustive list of all Tutorials and How To’s with a brief description
on what they help you to achieve.

1.3 Installing ScanCode

Scancode-Toolkit can be installed in 3 different methods.

1. The Scan a Codebase section helps you with configuring and installing ScanCode and performing a basic scan,
and then visualizing the results.

2. The Use ScanCode Better section helps you customize the scan according to your requirements, and better un-
derstand advanced features.

3. The All Tutorials/How-Tos is an exhaustive directory of all Tutorials and How To’s with a brief description.

1.3.1 Before you start using ScanCode

1. You need to make sure Prerequisites are installed, and a virtualenv is created.

Installation as an Application: Downloading Releases Installation via Docker: Installation as a library: via pip In-
stallation from Source Code: Git Clone

1. Now you can either follow the instructions for the recommended Installation as an Application: Downloading
Releases method , or run pip install scancode-toolkit[full] like that in the Installation as a library:
via pip documentation. Alternatively, you can also Installation from Source Code: Git Clone.

2. Run scancode -h to make sure Scancode was installed properly. If this shows any Error, refer the Common
Installation Errors Issue for common errors.

Note: Refer Quickstart to make sure you are using the scan command correctly.

Note: For Windows, Refer to Installation on Windows 10 for installing easily using Releases.

1.2. Try ScanCode Toolkit 3

https://docs.python-guide.org/dev/virtualenvs/
https://github.com/nexB/scancode-toolkit/issues/1837
https://github.com/nexB/scancode-toolkit/issues/1837

ScanCode-Toolkit

1.3.2 Scan a Codebase

Once you are all set up with Scancode Toolkit, i.e. Running scancode -h shows the Help text, you can start scanning
files or a codebase.

1. Refer Quickstart for commonly used scan commands, and commonly used Output Formats. (The recommended
output format is JSON)

2. Refer this section for Extractcode Options.

3. How to Run a Scan is a sample tutorial for absolute beginners, to walk them through the process of running a
scan. Follow this tutorial and perform a scan on the sample folder distributed with ScanCode, or any file/folder
of your choice. Avoid advanced options, and just follow the basic instructions.

4. ScanCode generates output files with scan results. You can visualize JSON result files using Scancode Workbench.
Follow this tutorial How to Visualize Scan results to visualize the scan results.

1.3.3 Use ScanCode Better

1. Go through all the options in the page All Available Options, to know about Scancode Command Line options.
You can then modify the Scan according to your requirements.

1.3.4 All Tutorials/How-Tos

The Tutorials are:

1. How to Run a Scan

2. How to Visualize Scan results

3. How to set what will be detected in Scan

4. How To Extract Archives

5. How to specify Scancode Output Format

6. Add A Post-Scan Plugin

The How-To’s are:

1. How To Add a New License for Detection

2. How to Add New License Rules for Enhanced Detection

1.3.5 ScanCode Versions

1. You can see all Scancode Toolkit versions on the GitHub release page.

2. Read the CHANGELOG for more information on specific releases.

3. If you want to use/test a specific version of Scancode Toolkit, you can follow the instructions in Installation from
Source Code: Git Clone docs.

1.3. Installing ScanCode 4

file:///home/ayansm/Desktop/GSoD/main_repo/aboutcode/docs/build/html/scancode-toolkit/cli-reference/list-options.html#all-extractcode-options
https://github.com/nexB/scancode-workbench
https://github.com/nexB/scancode-toolkit/releases
https://github.com/nexB/scancode-toolkit/blob/develop/CHANGELOG.rst

ScanCode-Toolkit

1.4 Learn more about ScanCode Toolkit

Here we give an introduction on the Scancode Toolkit Documentation Sections that can help you to learn more about
Scancode Toolkit.

1.4.1 CLI Reference

This section contains a complete guide to ScanCode Toolkit Command Line options, i.e. What the command-line
options are, how different options affect the scan and outputs, how to use these options and examples of their use cases.

Now this section has three types of pages:

1. The Synopsis page and the How to Run a Scan page as summaries.

2. An exhaustive list of all Command Line Options at All Available Options

3. All the other pages detailing the Type of Options

Note that the page for one type of options also has a short list of all the options detailed on that page in the beginning.
The All Available Options page just has all of them together, and also the extractcode options.

1.4.2 How Scancode Works

This section has documentation on How does ScanCode detect licenses?.

1.4.3 Plugins

Plugins are an integral part of ScanCode Toolkit in the sense they are used to easily extend Scancode capabilities, and
developers can code their own plugins according to their requirements.

This section has documentation on:

1. The Plugin Architecture

2. The License Policy Plugin

3. All Plugin Tutorials

1.5 Contribute

If you are looking to Contribute to Scancode Toolkit, this is where you start.

1.5.1 General Information

1. Also refer the Contribution page here.

2. For more Project Ideas, refer Contributor Project Ideas (old).

3. Before committing your work, make sure you have read this post on Writing good Commit Messages.

1.4. Learn more about ScanCode Toolkit 5

https://github.com/nexB/scancode-toolkit/blob/develop/CONTRIBUTING.rst
https://aboutcode.readthedocs.io/en/latest/archive/contributor_project_ideas.html#contributor-project-ideas
https://aboutcode.readthedocs.io/en/latest/contributing/writing_good_commit_messages.html#good-commit-messages

ScanCode-Toolkit

1.5.2 Contribute Code

If you haven’t contributed to Scancode Toolkit refer Good First Issues.

To determine where to contribute, you can refer:

1. ScanCode Toolkit tracks issues via the GitHub Issue tracker

2. Broad milestones for upcoming versions are also maintained.

And documentation related to contributing code can be referred at Contributing to Code Development.

1.5.3 Good First Issues

A good first issue means it’s recommended for people who haven’t contributed to Scancode Toolkit before.

1.5.4 Add new Functionality/Enhancement to ScanCode

There are two main paths you can follow to add a new functionality to Scancode. They are:

1. Add the functionality to Scancode itself.

2. Add plugins if the functionality is very much application dependent.

Refer enhancement issues for the first type of enhancements. If you want to add a plugin to implement the functionality,
refer all the Plugin Tutorials.

1.5.5 Update our Documentation

Maintaining a comprehensive, accurate, updated and effective documentation is very important as that directly affects
the acceptability of Scancode Toolkit.

To contribute to Scancode Toolkit Documentation, first refer the Contributing to the Documentation section.

The sections in this page cover the following:

1. Setup Local Build

2. Share Document Improvements

3. Continuous Integration system for the Documentation

4. Style Checks Using Doc8

5. Interspinx

6. Style Conventions for the Documentaion

You can contribute to the following Open Issues on documentation.

1. First Timers Only Issues List

2. Documentation Inconsistencies Tracker

3. ScanCode Toolkit Documentation Roadmap

4. Issues with label Documentation

Note: Refer Something Missing? to report Documentation Errors or to request Improvements.

1.5. Contribute 6

https://github.com/nexB/scancode-toolkit/issues
https://github.com/nexB/scancode-toolkit/milestones
https://github.com/nexB/scancode-toolkit/labels/good%20first%20issue
https://github.com/nexB/scancode-toolkit/labels/enhancement
https://github.com/nexB/scancode-toolkit/issues/1826
https://github.com/nexB/scancode-toolkit/issues/1813
https://github.com/nexB/scancode-toolkit/issues/1824
https://github.com/nexB/scancode-toolkit/issues?q=is%3Aopen+is%3Aissue+label%3Adocumentation

ScanCode-Toolkit

Also, consider contributing to other Aboutcode Project Documentations, as they need more support.

1.5.6 Participate in GSoC/GSoD

If you want to participate in any of the two programs:

• Google Summer of Code

• Google Season of Docs

Then:

1. Keep an eye out for Application Timelines.

2. Solve multiple of these Good First Issues to demonstrate your skills, and improve your chances of selection.

3. Refer to the Projects Ideas List for details on tentative projects.

• GSoC2023

4. Remain active in Element and talk with the organization mentors well ahead of the deadlines.

5. Select projects according to your skills and finalize project proposals.

6. Discuss your proposals extensively with corresponding mentors.

7. Apply for the Programs well before the Deadline.

Here’s a list of more Documentation Pages:

• A Synopsis of ScanCode Command Line Options

• Tutorials on How to Run a Scan and How to Visualize Scan results

• An exhaustive List of All Available Options

• Documentation on Contributing to Code Development

• Documentation on Plugin Architecture

• FAQ

1.5. Contribute 7

https://summerofcode.withgoogle.com
https://developers.google.com/season-of-docs
https://github.com/nexB/aboutcode/wiki/GSOC-2023

CHAPTER

TWO

GETTING STARTED

2.1 Getting Started

2.1.1 Home

ScanCode does scan code to detect packages and dependencies, licenses, copyrights and more.

Why ScanCode?

Discovering the origin and license for a software component is important, but it is often much harder to accomplish
than it should be because:

• A typical software project may reuse tens or thousands of third-party software components

• Software authors do not always provide copyright and license information

• Copyright and license information that is provided may be hard to find and interpret

ScanCode tries to address these issues by offering:

• A simple command line approach that runs on Windows, Linux, and macOS

• A comprehensive code scanner that can detect origin and license information in codebase files, including binaries

• A comprehensive set of package manifests and lockfile parsers to report direct and pinned dependencies

• Your choice of JSON or other output formats (YAML, SPDX, HTML, CSV) for integration with other tools

• Well-tested, easy to hack, and well-documented code

• A plugin system for easily adding new Functionality to Scans.

• Extensive documentation and support.

• We release of the code and reference data under permissive licenses (Apache 2.0 and CC-BY-4.0)

• ScanCode.io to assemble scripted and specialied code analysis pipelines with a web-based analysis server

• ScanCode workbench for desktop-based scans visualization

ScanCode is recognized as the industry leading engine for license and copyright detection and used as the basis of
several open source compliance efforts in open source projects and companies. It’s detection engine is embedded in
the most advanced open source and commercial tools available today for Software Composition Analysis.

8

ScanCode-Toolkit

What does ScanCode Toolkit do?

ScanCode detects and normalizes origin, dependencies, licensing and other related information in your code:

• by parsing package manifests and dependencies lock files to a normalized metadata model and assigning each an
identifying Package URL,

• by detecting license tags, notices and texts in text and binaries using the world most comprehensive database of
licenses texts and notices and a unique combination of techniuqes,

• by recognizing copyright statements using an advanced natural language parsing grammar and detecting other
origin clues (such as emails, urls, and authors)

Using this data you can:

• Discover the origin and license of the open source and third-party software components that you use,

• Discover direct dependent packages and indirect pinned or locked dependencies,

• Assemble a software component Inventory of your codebase, and report the data using standard SBOM formats,

• Use this data as the input to:

– open source license compliance obligations such as attribution and redistribution.

– open source package vulnerability detection.

How does it work?

Given a code directory, ScanCode will “scan code”:

• Extract files from any archive using a universal archive extractor

• Collect an inventory of the code files and classify the code using file types

• Extract texts from binary files as needed

• Use an extensible rules engine to detect open source license text, notices tags, mentions and license expressions
with over 31,000 detection rules.

• Use a specialized natural language parser and grammar to capture copyright statements

• Identify packaged code and collect metadata from packages by parsing the manifest and lockfiles (and in some
cases also the installed databases for system packages) for these package types: .ABOUT, Alpine Linux apk as
packages or installed, Android apk, Autotools, Bazel, JS Bower, Buck, Msft Cab, Rust Cargo, Chef, Chrome, PHP
Composer, Conda, Perl CPAN, R CRAN, Debian deb as packages or installed, Apple dmg, Java EAR, FreeBSD,
Ruby Gem, Go modules, Haxe, InstallShield, iOS ipa, ISO disk images, Apache IVY, Java JAR, JBoss SAR,
Maven, JS Meteor, Mozilla Extension, Msft MSI, JS npm, NSIS Installer, NuGet, Ocaml OPAM, Cocoapods,
Dart Pub, Python PyPI wheel and related, structured README, RPMs as packages or installed, Shell archive,
Squashfs, Java WAR, Msft Update Manifest, and Windows Executable.

• Report the results in the formats of your choice (JSON, YAML, CSV, SPDX, etc.) for integration with other tools

ScanCode is written in Python and also uses other open source packages.

2.1. Getting Started 9

https://github.com/package-url/purl-spec
https://github.com/nexB/extractcode

ScanCode-Toolkit

Alternative?

There are several utilities that do some of what ScanCode does - for instance you can grep files for copyright and
license text. This may work well for simple cases - e.g. at the single whole license text files and well structured copyright
statements, but we created ScanCode for ourselves because this approach does not help you to see the recurring patterns
of licenses and other origin history clues at scale.

You can consider other tools such as:

• FOSSology (open source, written in C, Linux only, GPL-licensed)

History

ScanCode was originally created by nexB to support our software audit consulting services. We have used and con-
tinuously enhanced the underlying toolkit for over 12 years. We decided to release ScanCode as open source software
to give software development teams the opportunity to perform as much of the software audit function as they like on
their own.

Thank you for giving ScanCode a try!

Other Important Documentation

1. Type of Options

2. How to Run a Scan

3. Basic Tutorials

4. How-To Guides

5. Reference Docs

6. Contributing to Code Development

7. Contributing to the Documentation

8. Plugin Architecture

9. FAQ

10. Support

2.1.2 Comprehensive Installation

The recommended way to install ScanCode is using app archives:

• Installation as an Application: Downloading Releases

The recommended method is to download the latest application release as an application and then
configure and use directly. No knowledge of pip/git or other developer tools is necessary. You only
need to install Python then download and extract the ScanCode application archive to run ScanCode.
For standard usage that’s all you need.

For advanced usage and experienced users, you can also use any of these mode:

• Installation via Docker:

An alternative to installing the latest Scancode Toolkit release natively is to build a Docker image
from the included Dockerfile. The only prerequisite is a working Docker installation.

• Installation from Source Code: Git Clone

2.1. Getting Started 10

ScanCode-Toolkit

You can clone the git source code repository and then run the configure script to configure and install
ScanCode for local and development usage.

• Installation as a library: via pip

To use ScanCode as a library in your application, you can install it via pip. This is recommended for
developers or users familiar with Python that want to embed ScanCode as a library.

Before Installing

• ScanCode requires a Python version between 3.8 to 3.12 and is tested on Linux, macOS, and Windows. It should
work fine on FreeBSD.

System Requirements

• Hardware : ScanCode will run best with a modern X86 64 bits processor and at least 8GB of RAM and 2GB of
disk space. These are minimum requirements.

• Supported operating systems: ScanCode should run on these 64-bit OSes running X86_64 processors:

1. Linux: on recent 64-bit Linux distributions,

2. Mac: on recent x86 64-bit macOS (10.15 and up, including 11 and 12), Use the X86 emulation mode on
Apple ARM M1 CPUs. (Note that pip install does not work on ARM CPUs)

3. Windows: on Windows 10 and up,

4. FreeBSD.

Prerequisites

ScanCode needs a Python 3.8+ interpreter; We support all Python versions from 3.8 to 3.12. The default version for
the application archives is Python 3.8

• On Linux:

Use your package manager to install python3.

For Ubuntu, it is sudo apt install python3-dev

– On Ubuntu 16, 18, 20 and 22 run:

sudo apt install python-dev bzip2 xz-utils zlib1g libxml2-dev libxslt1-
→˓dev libpopt0

– On Debian and Debian-based distros run:

sudo apt-get install python3-dev libbz2-1.0 xz-utils zlib1g libxml2-dev␣
→˓libxslt1-dev libpopt0

– On RPM-based distros run:

sudo yum install python3.8-devel zlib bzip2-libs xz-libs libxml2-devel␣
→˓libxslt-devel libpopt0

– On Fedora 22 and later run:

2.1. Getting Started 11

ScanCode-Toolkit

sudo dnf install python3.8-devel xz-libs zlib libxml2-devel libxslt-
→˓devel bzip2-libs libpopt0

If these packages are not available from your package manager, you must compile them from sources.

• On Mac:

The default Python 3 provided with macOS is 3.8. Alternatively you can download and install Python
3.8 from https://www.python.org/

• On Windows:
Download and install Python 3.8 from https://www.python.org/

Note: 64-bit Python interpreters (x86-64) are the only interpreters supported by Scancode on all
operating systems which means only 64-bit Windows is supported.

See the Installation on Windows 10 section for more installation details.

Installation as an Application: Downloading Releases

Get the Scancode Toolkit tarball archive of a specific version and your operating system by going to the project releases
page

For example, Version 30.0.1 archive can be obtained from Toolkit release 30.0.1 under assets options.

Note: ScanCode app archives come with packaged with all required dependencies except for Python that has to be
downloaded and installed separately. On more recent versions of Ubuntu, you will have to install Python 3.8 manually.
One possibility is to use the Deadsnakes PPA (Personal Package Archive) which is a project that provides older Python
version builds for Debian and Ubuntu and is available at https://github.com/deadsnakes/ and https://launchpad.net/
~deadsnakes/+archive/ubuntu/ppa

sudo apt-get update && sudo apt-get upgrade
sudo add-apt-repository ppa:deadsnakes/ppa --yes
sudo apt-get install python3.8 python3.8-distutils

Installation on Linux and Mac

Download the archive for your operating systen and extract the archive from command line:

tar -xvf scancode-toolkit-30.0.1_py38-linux.tar.gz

Or, on Linux, right click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal in the extracted directory and run:

./scancode --help

This will configure ScanCode and display the command line Help text.

2.1. Getting Started 12

https://www.python.org/
https://www.python.org/
https://github.com/nexB/scancode-toolkit/releases/
https://github.com/nexB/scancode-toolkit/releases/
https://github.com/nexB/scancode-toolkit/releases/tag/v30.0.1
https://github.com/deadsnakes/
https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa
https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa

ScanCode-Toolkit

Installation on Windows 10

• Download the latest ScanCode release zip file for Windows from the latest version at https://github.com/nexB/
scancode-toolkit/releases/

• In the File Explorer, select the downloaded ScanCode zip and right-click.

• In the pop-up menu select ‘Extract All. . . ’

• In the pop-up window ‘Extract Compressed (Zipped) Folders’ use the default options to extract.

• Once the extraction is complete, a new File Explorer window will pop up.

• In this Explorer window, select the new folder that was created and right-click.

Note: On Windows 10, double-click the new folder, select one of the files inside the folder (e.g., ‘setup.py’), and
right-click.

• In the pop-up menu select ‘Properties’.

• In the pop-up window ‘Properties’, select the Location value. Copy this to the clipboard and close the ‘Properties’
window.

• Press the start menu button, click the search box or search icon in the taskbar.

• In the search box type:

cmd

• Select ‘cmd.exe’ or ‘Command Prompt’ listed in the search results.

• A new ‘Command Prompt’pops up.

• In this window (aka a ‘command prompt’), type ‘cd’ followed by a space and then Right-click in this window
and select Paste. This will paste the path you copied before and is where you extracted ScanCode:

cd path/to/extracted/ScanCode

• Press Enter.

• This will change the current location of your command prompt to the root directory where ScanCode is installed.

• Then type:

scancode -h

• Press enter. This first command will configure your ScanCode installation. Several messages are displayed
followed by the ScanCode command help.

• The installation is complete.

2.1. Getting Started 13

https://github.com/nexB/scancode-toolkit/releases/
https://github.com/nexB/scancode-toolkit/releases/

ScanCode-Toolkit

Un-installation

• Delete the directory in which you extracted ScanCode.

• Delete any temporary files created in your system temp and user temp directory under a ScanCode-prefixed
directory such as .scancode-tk or .cache/scancode-tk.

Installation via Docker:

You can install Scancode Toolkit by building a Docker image from the included Dockerfile. The prerequisite is a
working docker installation.

Download the ScanCode-Toolkit Source Code

• git clone https://github.com/nexB/scancode-toolkit to get the latest (Installation from Source
Code: Git Clone) source code.

Build the Docker image

Run the docker build source code checkout directory.:

cd scancode-toolkit
docker build --tag scancode-toolkit --tag scancode-toolkit:$(git describe --tags) .

Run using Docker

The docker image will forward all arguments it receives directly to the scancode command.

Display help:

docker run scancode-toolkit --help

Mount current working directory as “/project” and run a scan on a file name apache-2.0.LICENSE directory. The JSON
results will be in scan-result.json:

docker run -v $PWD/:/project scancode-toolkit -clipeu --json-pp /project/scan-result.
→˓json /project/apache-2.0.LICENSE

This will mount your current working from the host into /project in the container and then scan the contents. The
output result.json will be written back to your current working directory on the host.

Note that the parameters before scancode-toolkit are used for docker, those after will be forwarded to scancode.

2.1. Getting Started 14

https://docs.docker.com/engine/install/

ScanCode-Toolkit

Installation from Source Code: Git Clone

You can download the Scancode Toolkit Source Code and build from it yourself. This is what you would want to do it
if:

• You are developing ScanCode or adding new patches or want to run tests.

• You want to test or run a specific version/checkpoint/branch from the version control.

Download the ScanCode-Toolkit Source Code

Run the following once you have Git installed:

git clone https://github.com/nexB/scancode-toolkit.git
cd scancode-toolkit

Configure the build

ScanCode use a configure scripts to create an isolated virtual environment, install required packaged dependencies.

On Linux/Mac:

• Open a terminal

• cd to the clone directory

• run ./configure

• run source venv/bin/activate

On Windows:

• open a command prompt

• cd to the clone directory

• run configure

• run venv\Scripts\activate

Now you are ready to use the freshly configured scancode-toolkit.

Note: For use in development, run instead configure --dev. If your face issues while configuring a previous
version, configure --clean to clean and reset your enviroment. You will need to run configure again.

2.1. Getting Started 15

https://git-scm.com/

ScanCode-Toolkit

Installation as a library: via pip

ScanCode can be installed from the public PyPI repository using pip which the standard Python package management
tool.

Note: Note that pip installation method does work on ARM chips, i.e. Linux/MacOS on Apple M1 chips, as some non-
native dependencies do not have pre-built wheels for ARM (like py-ahocorasick, intbitset). See System Requirements
for more information. See related issues for more info:

• Fallback pure-python deps

• pip install failing on M1

The steps are:

1. Create a Python virtual environment:

/usr/bin/python3 -m venv venv

For more information on Python virtualenv, visit this page.

1. Activate the virtual environment you just created:

source venv/bin/activate

2. Run pip to install the latest versions of base utilities:

pip install --upgrade pip setuptools wheel

3. Install the latest version of ScanCode:

pip install scancode-toolkit

Note: For advanced usage, scancode-toolkit-mini is an alternative package with no default dependencies on
pre-built binaries. This may come handy for some special use cases such as packaging for a Linux or FreeBSD distro.

To uninstall, run:

pip uninstall scancode-toolkit

Command Invocation Variations

These are the commands to invoke ScanCode based on:

• your installation methods

• your operating systems

The two form of commands are:

• Use the scancode command directly, typically on Windows or in an activated virtualenv:

scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

2.1. Getting Started 16

https://github.com/nexB/scancode-toolkit/issues/3210
https://github.com/nexB/scancode-toolkit/issues/3205
https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv

ScanCode-Toolkit

• Use a path to the scancode command, typically with an application installation

path/to/scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

These variations are summed up in the following table:

Installation
Methods

Ap-
pli-
ca-
tion
In-
stall

Pip Install Install from Source Code

Linux path:
./scan-
code

direct: scan-
code

path: ./scancode or direct: scancode

Mac path:
./scan-
code

direct: scan-
code

path: ./scancode or direct: scancode

Windows path:
scan-
code

direct: scan-
code

path: scancode or direct: scancode

2.1. Getting Started 17

CHAPTER

THREE

COMMAND LINE OPTIONS REFERENCE

Reference documents describe the Command Line options, and application concepts in depth.

3.1 Command Line Interface Reference

3.1.1 Synopsis

ScanCode detects licenses, copyrights, package manifests and direct dependencies and more, both in source code and
binary files, by scanning the files. This page introduces you to the ScanCode Toolkit Command Line Interface in the
following sections:

• Installation

• Quickstart

• Type of Options

• Output Formats

• Other Important Documentation

Installation

Scancode-Toolkit installation can be done by downloading ScanCode as an application, which is recommended gener-
ally. For users who wish to use ScanCode as a library, it can be installed via pip, the default Python Package Manager.
Refer the following sections for detailed Instructions on the each of the Installation Methods.

• Installation as an Application: Downloading Releases

• Installation as a library: via pip

• Installation from Source Code: Git Clone

18

ScanCode-Toolkit

Quickstart

The basic command to perform a scan, in case of a download and configure installation (on Linux/MacOS) is:

path/to/scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

The basic usage, if Scancode is installed from pip, or in Windows:

scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

Here Scancode scans the <SCAN INPUT> file or directory for license, origin and packages and saves results to FILE(s)
using one or more output format option. Error and progress are printed to stdout.

To scan the samples directory distributed with ScanCode-Toolkit, the command will be:

scancode -clpieu --json-pp path/to/output.json path/to/samples

Note: The <OUTPUT FORMAT OPTION(s)> includes both the output option and output file name. For example in
the command scancode -clpieu --json-pp output.json samples, --json-pp output.json is <OUTPUT
FORMAT OPTION(s)>.

Warning: There isn’t a “Default” output option in Versions 3.x onwards, you have to specify <OUTPUT FORMAT
OPTION(s)> explicitly.

Alternatively, in case of download and configure installations, where path/to/scancode is used (the path from root
of file system) we can go into the scancode directory (like scancode-toolkit-3.1.1) and then use ./scancode.
The same applies for input and output options. To scan a folder samples inside ScanCode directory, and output to a
file output.json in the same directory, the command will be:

./scancode -clpieu --json-pp output.json samples

While a scan using absolute paths from the file system root will look like:

home/ayansm/software/scancode-toolkit-3.1.1/scancode -clpieu --json-pp home/ayansm/scan_
→˓scan_results/output.json home/ayansm/codebases/samples/

Commands similar to scancode -clpi --json-pp output.json samples will be used as examples throughout
the documentation.

• Here we are inside the virtualenv where Scancode-Toolkit is configured.

• And the default samples folder is being scanned, which is distributed by default with Scancode-Toolkit.

3.1. Command Line Interface Reference 19

ScanCode-Toolkit

Type of Options

ScanCode Toolkit Command Line options can be divided into these major sections:

• All “Basic” Scan Options

• Extractcode Options

• All “Core” Scan Options

• Controlling Scancode Output and Filters

• Pre-Scan Options

• Post-Scan Options

Refer the individual pages which are linked to above, for detailed discussions on the Command Line Options listed
under each section.

Output Formats

The output file format is set by using the various output options. The recommended output format is JSON. If --json
is used, the entire file being in one line, without whitespace characters.

The following example scans will show you how to run a scan with each of the result formats. For the scans, we will
use the samples directory provided with the ScanCode Toolkit.

Tip: You can also output to stdout instead of a file. For more information refer Print to stdout (Terminal).

JSON file output

Scan the samples directory and save the scan to a JSON file (pretty-printed)::

scancode -clpieu --json-pp output.json samples

A sample JSON output file structure will look like:

{
"headers": [
{
"tool_name": "scancode-toolkit",
"tool_version": "3.1.1",
"options": {
"input": [
"samples/"

],
"--copyright": true,
"--email": true,
"--info": true,
"--json-pp": "output.json",
"--license": true,
"--package": true,
"--url": true

},
(continues on next page)

3.1. Command Line Interface Reference 20

ScanCode-Toolkit

(continued from previous page)

"notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT␣
→˓WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created␣
→˓from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor␣
→˓any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and␣
→˓others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.",

"start_timestamp": "2019-10-19T191117.292858",
"end_timestamp": "2019-10-19T191219.743133",
"message": null,
"errors": [],
"extra_data": {
"files_count": 36

}
}

],
"files": [
{
"path": "samples",
"type": "directory",
...
...
...
"scan_errors": []

},
{
"path": "samples/README",
"type": "file",
"name": "README",
"base_name": "README",
"extension": "",
"size": 236,
"date": "2019-02-12",
"sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
"md5": "effc6856ef85a9250fb1a470792b3f38",
"mime_type": "text/plain",
"file_type": "ASCII text",
"programming_language": null,
"is_binary": false,
"is_text": true,
"is_archive": false,
"is_media": false,
"is_source": false,
"is_script": false,
"licenses": [],
"license_expressions": [],
"copyrights": [],
"holders": [],
"authors": [],
"packages": [],
"emails": [],
"urls": [],
"files_count": 0,
"dirs_count": 0,

(continues on next page)

3.1. Command Line Interface Reference 21

ScanCode-Toolkit

(continued from previous page)

"size_count": 0,
"scan_errors": []

},
...
...
...
{
"path": "samples/zlib/iostream2/zstream_test.cpp",
"type": "file",
"name": "zstream_test.cpp",
"base_name": "zstream_test",
"extension": ".cpp",
"size": 711,
"date": "2019-02-12",
...
...
...
"scan_errors": []

}
]

}

A sample JSON output for an individual file will look like:

{
"path": "samples/zlib/iostream2/zstream.h",
"type": "file",
"name": "zstream.h",
"base_name": "zstream",
"extension": ".h",
"size": 9283,
"date": "2019-02-12",
"sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
"md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
"mime_type": "text/x-c++",
"file_type": "C++ source, ASCII text",
"programming_language": "C++",
"is_binary": false,
"is_text": true,
"is_archive": false,
"is_media": false,
"is_source": true,
"is_script": false,
"licenses": [
{
"key": "mit-old-style",
"score": 100.0,
"name": "MIT Old Style",
"short_name": "MIT Old Style",
"category": "Permissive",
"is_exception": false,
"is_unknown": false,

(continues on next page)

3.1. Command Line Interface Reference 22

ScanCode-Toolkit

(continued from previous page)

"owner": "MIT",
"homepage_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
"text_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
"reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:mit-old-style

→˓",
"spdx_license_key": null,
"spdx_url": null,
"start_line": 9,
"end_line": 15,
"matched_rule": {
"identifier": "mit-old-style_cmr-no_1.RULE",
"license_expression": "mit-old-style",
"licenses": [
"mit-old-style"

],
"is_license_text": true,
"is_license_notice": false,
"is_license_reference": false,
"is_license_tag": false,
"matcher": "2-aho",
"rule_length": 71,
"matched_length": 71,
"match_coverage": 100.0,
"rule_relevance": 100

}
}

],
"license_expressions": [
"mit-old-style"

],
"copyrights": [
{
"copyright": "Copyright (c) 1997 Christian Michelsen Research AS Advanced Computing

→˓",
"start_line": 3,
"end_line": 5

}
],
"holders": [
{
"holder": "Christian Michelsen Research AS Advanced Computing",
"start_line": 3,
"end_line": 5

}
],
"authors": [],
"packages": [],
"emails": [],
"urls": [
{
"url": "http://www.cmr.no/",
"start_line": 7,

(continues on next page)

3.1. Command Line Interface Reference 23

ScanCode-Toolkit

(continued from previous page)

"end_line": 7
}

],
"files_count": 0,
"dirs_count": 0,
"size_count": 0,
"scan_errors": []

},

Static HTML output

Scan the samples directory for licenses and copyrights and save the scan results to an HTML file. When the scan is
done, open samples.html in your web browser.

scancode -clpieu --html output.html samples

3.1. Command Line Interface Reference 24

ScanCode-Toolkit

Other Important Documentation

1. Type of Options

2. How to Run a Scan

3. Basic Tutorials

4. How-To Guides

5. Reference Docs

6. Contributing to Code Development

7. Contributing to the Documentation

8. Plugin Architecture

9. FAQ

10. Support

3.1. Command Line Interface Reference 25

ScanCode-Toolkit

3.1.2 Getting Help from the Command Line

ScanCode-Toolkit Command Line Interface can help you to search for specific options or use cases from the command
line itself. These are two options are --help and --examples, and are very helpful if you need a quick glance of the
options or use cases. Or it can be useful when you can’t access, the more elaborate online documentation.

All Documentation/Help Options

-h, --help Show the Help text and exit.

--examples Show the Command Examples Text and exit.

-A, --about Show information about ScanCode and licensing and exit.

-V, --version Show the version and exit.

--list-packages Show the list of supported package types and exit.

--plugins Show the list of available ScanCode plugins and exit.

--print-options Show the list of selected options and exit.

Help text

The Scancode-Toolkit Command Line Interface has a Help option displaying all the options. It also displays basic
usage, and some simple examples. The command line option for this is --help.

Tip: You can also use the shorter -h option, which does the same.

To see the help text from the Terminal, execute the following command:

$ scancode --help

The Following Help Text is displayed, i.e. This is the help text for Scancode Version 32.0.0:

Usage: scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <input>...

scan the <input> file or directory for license, origin and packages and save
results to FILE(s) using one or more output format option.

Error and progress are printed to stderr.

Options:

primary scans:
-l, --license Scan <input> for licenses.
-p, --package Scan <input> for application package and dependency

manifests, lockfiles and related data.
--system-package Scan <input> for installed system package databases.
-c, --copyright Scan <input> for copyrights.

other scans:
-i, --info Scan <input> for file information (size, checksums, etc).
--generated Classify automatically generated code files with a flag.

(continues on next page)

3.1. Command Line Interface Reference 26

ScanCode-Toolkit

(continued from previous page)

-e, --email Scan <input> for emails.
-u, --url Scan <input> for urls.

scan options:
--license-diagnostics In license detections, include diagnostic details

to figure out the license detection post
processing steps applied.

--license-score INTEGER Do not return license matches with a score lower
than this score. A number between 0 and 100.
[default: 0]

--license-text Include the detected licenses matched text.
--license-text-diagnostics In the matched license text, include diagnostic

highlights surrounding with square brackets []
words that are not matched.

--license-url-template TEXT Set the template URL used for the license
reference URLs. Curly braces ({}) are replaced by
the license key. [default: https://scancode-
licensedb.aboutcode.org/{}]

--max-email INT Report only up to INT emails found in a file. Use
0 for no limit. [default: 50]

--max-url INT Report only up to INT urls found in a file. Use 0
for no limit. [default: 50]

--unknown-licenses [EXPERIMENTAL] Detect unknown licenses.

output formats:
--json FILE Write scan output as compact JSON to FILE.
--json-pp FILE Write scan output as pretty-printed JSON to FILE.
--json-lines FILE Write scan output as JSON Lines to FILE.
--yaml FILE Write scan output as YAML to FILE.
--csv FILE [DEPRECATED] Write scan output as CSV to FILE. The

--csv option is deprecated and will be replaced by new
CSV and tabular output formats in the next ScanCode
release. Visit https://github.com/nexB/scancode-
toolkit/issues/3043 to provide inputs and feedback.

--html FILE Write scan output as HTML to FILE.
--custom-output FILE Write scan output to FILE formatted with the custom

Jinja template file.
--debian FILE Write scan output in machine-readable Debian copyright

format to FILE.
--custom-template FILE Use this Jinja template FILE as a custom template.
--cyclonedx FILE Write scan output in CycloneDX JSON format to FILE.
--cyclonedx-xml FILE Write scan output in CycloneDX XML format to FILE.
--spdx-rdf FILE Write scan output as SPDX RDF to FILE.
--spdx-tv FILE Write scan output as SPDX Tag/Value to FILE.
--html-app FILE (DEPRECATED: use the ScanCode Workbench app instead)

Write scan output as a mini HTML application to FILE.

output filters:
--ignore-author <pattern> Ignore a file (and all its findings) if an

author contains a match to the <pattern>
regular expression. Note that this will ignore
a file even if it has other findings such as a

(continues on next page)

3.1. Command Line Interface Reference 27

ScanCode-Toolkit

(continued from previous page)

license or errors.
--ignore-copyright-holder <pattern> Ignore a file (and all its findings) if a

copyright holder contains a match to the
<pattern> regular expression. Note that this
will ignore a file even if it has other
scanned data such as a license or errors.

--only-findings Only return files or directories with findings
for the requested scans. Files and directories
without findings are omitted (file information
is not treated as findings).

output control:
--full-root Report full, absolute paths.
--strip-root Strip the root directory segment of all paths. The default is to

always include the last directory segment of the scanned path
such that all paths have a common root directory.

pre-scan:
--ignore <pattern> Ignore files matching <pattern>.
--include <pattern> Include files matching <pattern>.
--classify Classify files with flags indicating whether the file is a

legal, readme, test or similar file.
--facet <facet>=<pattern> Add the <facet> to files with a path matching

<pattern>.

post-scan:
--consolidate Group resources by Packages or license and copyright

holder and return those groupings as a list of
consolidated packages and a list of consolidated
components. This requires the scan to have/be run
with the copyright, license, and package options
active

--filter-clues Filter redundant duplicated clues already contained
in detected license and copyright texts and notices.

--license-clarity-score Compute a summary license clarity score at the
codebase level.

--license-policy FILE Load a License Policy file and apply it to the scan
at the Resource level.

--license-references Return reference data for all licenses and license
rules present in detections.

--mark-source Set the "is_source" to true for directories that
contain over 90% of source files as children and
descendants. Count the number of source files in a
directory as a new source_file_counts attribute

--summary Summarize scans by providing declared origin
information and other detected origin info at the
codebase attribute level.

--tallies Compute tallies for license, copyright and other
scans at the codebase level.

--tallies-by-facet Compute tallies for license, copyright and other
scans and group the results by facet.

--tallies-key-files Compute tallies for license, copyright and other

(continues on next page)

3.1. Command Line Interface Reference 28

ScanCode-Toolkit

(continued from previous page)

scans for key, top-level files. Key files are top-
level codebase files such as COPYING, README and
package manifests as reported by the --classify
option "is_legal", "is_readme", "is_manifest" and
"is_top_level" flags.

--tallies-with-details Compute tallies of license, copyright and other scans
at the codebase level, keeping intermediate details
at the file and directory level.

core:
--timeout <seconds> Stop an unfinished file scan after a timeout in

seconds. [default: 120 seconds]
-n, --processes INT Set the number of parallel processes to use. Disable

parallel processing if 0. Also disable threading if
-1. [default: 1]

-q, --quiet Do not print summary or progress.
-v, --verbose Print progress as file-by-file path instead of a

progress bar. Print verbose scan counters.
--from-json Load codebase from one or more <input> JSON scan

file(s).
--max-in-memory INTEGER Maximum number of files and directories scan details

kept in memory during a scan. Additional files and
directories scan details above this number are cached
on-disk rather than in memory. Use 0 to use unlimited
memory and disable on-disk caching. Use -1 to use
only on-disk caching. [default: 10000]

--max-depth INTEGER Maximum nesting depth of subdirectories to scan.
Descend at most INTEGER levels of directories below
and including the starting directory. Use 0 for no
scan depth limit.

documentation:
-h, --help Show this message and exit.
-A, --about Show information about ScanCode and licensing and exit.
-V, --version Show the version and exit.
--examples Show command examples and exit.
--list-packages Show the list of supported package manifest parsers and exit.
--plugins Show the list of available ScanCode plugins and exit.
--print-options Show the list of selected options and exit.

Examples (use --examples for more):

Scan the 'samples' directory for licenses and copyrights.
Save scan results to the 'scancode_result.json' JSON file:

scancode --license --copyright --json-pp scancode_result.json samples

Scan the 'samples' directory for licenses and package manifests. Print scan
results on screen as pretty-formatted JSON (using the special '-' FILE to print
to on screen/to stdout):

scancode --json-pp - --license --package samples

(continues on next page)

3.1. Command Line Interface Reference 29

ScanCode-Toolkit

(continued from previous page)

Note: when you run ScanCode, a progress bar is displayed with a counter of the
number of files processed. Use --verbose to display file-by-file progress.

Command Examples Text

The Scancode-Toolkit Command Line Interface has an --examples option which displays some basic examples (more
than the basic synopsis in --help). These examples include the following aspects of code scanning:

• Scanning Single File/Directory

• Output Scan results to stdout (as JSON) or HTML/JSON file

• Scanning for only Copyrights/Licenses

• Ignoring Files

• Using GLOB Patterns to Scan Multiple Files

• Using Verbose Mode

The command line option for displaying these basic examples is --examples.

To see the help text from the Terminal, execute the following command:

$ scancode --examples

The Following Text is displayed, i.e. This is the examples for Scancode Version 3.1.1

Scancode command lines examples:

(Note for Windows: use '\' back slash instead of '/' forward slash for paths.)

Scan a single file for copyrights. Print scan results to stdout as pretty JSON:

scancode --copyright samples/zlib/zlib.h --json-pp -

Scan a single file for licenses, print verbose progress to stderr as each
file is scanned. Save scan to a JSON file:

scancode --license --verbose samples/zlib/zlib.h --json licenses.json

Scan a directory explicitly for licenses and copyrights. Redirect JSON scan
results to a file:

scancode --license --copyright samples/zlib/ --json - > scan.json

Scan a directory while ignoring a single file. Scan for license, copyright and
package manifests. Use four parallel processes.
Print scan results to stdout as pretty formatted JSON.

scancode -lc --package --ignore README --processes 4 --json-pp - samples/

Scan a directory while ignoring all files with .txt extension.
Print scan results to stdout as pretty formatted JSON.

(continues on next page)

3.1. Command Line Interface Reference 30

ScanCode-Toolkit

(continued from previous page)

It is recommended to use quotes around glob patterns to prevent pattern
expansion by the shell:

scancode --json-pp - --ignore "*.txt" samples/

Special characters supported in GLOB pattern:
- * matches everything
- ? matches any single character
- [seq] matches any character in seq
- [!seq] matches any character not in seq

For a literal match, wrap the meta-characters in brackets.
For example, '[?]' matches the character '?'.
For details on GLOB patterns see https://en.wikipedia.org/wiki/Glob_(programming).

Note: Glob patterns cannot be applied to path as strings.
For example, this will not ignore "samples/JGroups/licenses".

scancode --json - --ignore "samples*licenses" samples/

Scan a directory while ignoring multiple files (or glob patterns).
Print the scan results to stdout as JSON:

scancode --json - --ignore README --ignore "*.txt" samples/

Scan a directory for licenses and copyrights. Save scan results to an
HTML file:

scancode --license --copyright --html scancode_result.html samples/zlib

To extract archives, see the 'extractcode' command instead.

Plugins Help Text

The command line option for displaying all the plugins is:

• --plugins

To see the help text from the Terminal, execute the following command:

$ scancode --plugins

Note: Plugins that are shown by using --plugins include the following:

1. Post-Scan Plugins

2. Pre-Scan Plugins

3. Output Options

4. Output Control

5. Basic Scan Options

3.1. Command Line Interface Reference 31

ScanCode-Toolkit

The Following Text is displayed, i.e. This is the available plugins for Scancode Version 31.2.1

--
Plugin: scancode_output:csv class: formattedcode.output_csv:CsvOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: csv: --csv
help: [DEPRECATED] Write scan output as CSV to FILE. The --csv option is␣

→˓deprecated and will be replaced by new CSV and tabular output formats in the next␣
→˓ScanCode release. Visit https://github.com/nexB/scancode-toolkit/issues/3043 to␣
→˓provide inputs and feedback.
doc: None

--
Plugin: scancode_output:cyclonedx class: formattedcode.output_
→˓cyclonedx:CycloneDxJsonOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: output_cyclonedx_json: --cyclonedx
help: Write scan output in CycloneDX JSON format to FILE.

doc:
Output plugin to write scan results in CycloneDX JSON format.
For additional information on the format,
please see https://cyclonedx.org/specification/overview/

--
Plugin: scancode_output:cyclonedx-xml class: formattedcode.output_
→˓cyclonedx:CycloneDxXmlOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: output_cyclonedx_xml: --cyclonedx-xml
help: Write scan output in CycloneDX XML format to FILE.

doc:
Output plugin to write scan results in CycloneDX XML format.
For additional information on the format,
please see https://cyclonedx.org/specification/overview/

--
Plugin: scancode_output:debian class: formattedcode.output_debian:DebianCopyrightOutput
codebase_attributes:
resource_attributes:

(continues on next page)

3.1. Command Line Interface Reference 32

ScanCode-Toolkit

(continued from previous page)

sort_order: 100
required_plugins:
options:
help_group: output formats, name: output_debian: --debian
help: Write scan output in machine-readable Debian copyright format to FILE.

doc: None

--
Plugin: scancode_output:html class: formattedcode.output_html:HtmlOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: html: --html
help: Write scan output as HTML to FILE.

doc: None

--
Plugin: scancode_output:html-app class: formattedcode.output_html:HtmlAppOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: html_app: --html-app
help: (DEPRECATED: use the ScanCode Workbench app instead)
Write scan output as a mini HTML application to FILE.

doc:
Write scan output as a mini HTML application.

--
Plugin: scancode_output:json class: formattedcode.output_json:JsonCompactOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: output_json: --json
help: Write scan output as compact JSON to FILE.

doc: None

--
Plugin: scancode_output:json-pp class: formattedcode.output_json:JsonPrettyOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: output_json_pp: --json-pp
help: Write scan output as pretty-printed JSON to FILE.

(continues on next page)

3.1. Command Line Interface Reference 33

ScanCode-Toolkit

(continued from previous page)

doc: None

--
Plugin: scancode_output:jsonlines class: formattedcode.output_jsonlines:JsonLinesOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: output_json_lines: --json-lines
help: Write scan output as JSON Lines to FILE.

doc: None

--
Plugin: scancode_output:spdx-rdf class: formattedcode.output_spdx:SpdxRdfOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: spdx_rdf: --spdx-rdf
help: Write scan output as SPDX RDF to FILE.

doc: None

--
Plugin: scancode_output:spdx-tv class: formattedcode.output_spdx:SpdxTvOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: spdx_tv: --spdx-tv
help: Write scan output as SPDX Tag/Value to FILE.

doc: None

--
Plugin: scancode_output:template class: formattedcode.output_html:CustomTemplateOutput
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output formats, name: custom_output: --custom-output
help: Write scan output to FILE formatted with the custom Jinja template file.

help_group: output formats, name: custom_template: --custom-template
help: Use this Jinja template FILE as a custom template.

doc: None

--
Plugin: scancode_output:yaml class: formattedcode.output_yaml:YamlOutput
codebase_attributes:
resource_attributes:

(continues on next page)

3.1. Command Line Interface Reference 34

ScanCode-Toolkit

(continued from previous page)

sort_order: 100
required_plugins:
options:
help_group: output formats, name: output_yaml: --yaml
help: Write scan output as YAML to FILE.

doc: None

--
Plugin: scancode_output_filter:ignore-copyrights class: cluecode.plugin_ignore_
→˓copyrights:IgnoreCopyrights
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output filters, name: ignore_copyright_holder: --ignore-copyright-holder
help: Ignore a file (and all its findings) if a copyright holder contains a match␣

→˓to the <pattern> regular expression. Note that this will ignore a file even if it has␣
→˓other scanned data such as a license or errors.

help_group: output filters, name: ignore_author: --ignore-author
help: Ignore a file (and all its findings) if an author contains a match to the

→˓<pattern> regular expression. Note that this will ignore a file even if it has other␣
→˓findings such as a license or errors.
doc:
Filter findings that match given copyright holder or author patterns.
Has no effect unless the --copyright scan is requested.

--
Plugin: scancode_output_filter:only-findings class: scancode.plugin_only_
→˓findings:OnlyFindings
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: output filters, name: only_findings: --only-findings
help: Only return files or directories with findings for the requested scans.␣

→˓Files and directories without findings are omitted (file information is not treated as␣
→˓findings).
doc:
Filter files or directories without scan findings for the requested scans.

--
Plugin: scancode_post_scan:consolidate class: summarycode.plugin_
→˓consolidate:Consolidator
codebase_attributes: consolidated_components, consolidated_packages
resource_attributes: consolidated_to
sort_order: 10
required_plugins:
options:

(continues on next page)

3.1. Command Line Interface Reference 35

ScanCode-Toolkit

(continued from previous page)

help_group: post-scan, name: consolidate: --consolidate
help: Group resources by Packages or license and copyright holder and return those␣

→˓groupings as a list of consolidated packages and a list of consolidated components.␣
→˓This requires the scan to have/be run with the copyright, license, and package options␣
→˓active
doc:
A ScanCode post-scan plugin to return consolidated components and consolidated
packages for different types of codebase summarization.

A consolidated component is a group of Resources that have the same origin.
Currently, a ConsolidatedComponent is created for each detected copyright holder
in a codebase and contains resources that have that particular copyright holder.

A consolidated package is a detected package in the scanned codebase that has
been enhanced with data about other licenses and holders found within it.

If a Resource is part of a consolidated component or consolidated package, then
the identifier of the consolidated component or consolidated package it is part
of is in the Resource's ``consolidated_to`` field.

--
Plugin: scancode_post_scan:filter-clues class: cluecode.plugin_filter_
→˓clues:RedundantCluesFilter
codebase_attributes:
resource_attributes:
sort_order: 1
required_plugins:
options:
help_group: post-scan, name: filter_clues: --filter-clues
help: Filter redundant duplicated clues already contained in detected license and␣

→˓copyright texts and notices.
doc:
Filter redundant clues (copyrights, authors, emails, and urls) that are
already contained in a matched license text.

--
Plugin: scancode_post_scan:license-clarity-score class: summarycode.
→˓score:LicenseClarityScore
codebase_attributes: summary
resource_attributes:
sort_order: 5
required_plugins:
options:
help_group: post-scan, name: license_clarity_score: --license-clarity-score
help: Compute a summary license clarity score at the codebase level.

doc:
Compute a License clarity score at the codebase level.

--

(continues on next page)

3.1. Command Line Interface Reference 36

ScanCode-Toolkit

(continued from previous page)

Plugin: scancode_post_scan:license-policy class: licensedcode.plugin_license_
→˓policy:LicensePolicy
codebase_attributes:
resource_attributes: license_policy
sort_order: 9
required_plugins:
options:
help_group: post-scan, name: license_policy: --license-policy
help: Load a License Policy file and apply it to the scan at the Resource level.

doc:
Add the "license_policy" attribute to a resouce if it contains a
detected license key that is found in the license_policy.yml file

--
Plugin: scancode_post_scan:license-references class: licensedcode.licenses_
→˓reference:LicenseReference
codebase_attributes: license_references, license_rule_references
resource_attributes:
sort_order: 1000
required_plugins:
options:
help_group: post-scan, name: license_references: --license-references
help: Return reference data for all licenses and license rulespresent in␣

→˓detections.
doc:
Add license and rule reference data to a scan.

--
Plugin: scancode_post_scan:mark-source class: scancode.plugin_mark_source:MarkSource
codebase_attributes:
resource_attributes: source_count
sort_order: 8
required_plugins:
options:
help_group: post-scan, name: mark_source: --mark-source
help: Set the "is_source" to true for directories that contain over 90% of source␣

→˓files as children and descendants. Count the number of source files in a directory as␣
→˓a new source_file_counts attribute
doc:
Set the "is_source" flag to true for directories that contain
over 90% of source files as direct children.
Has no effect unless the --info scan is requested.

--
Plugin: scancode_post_scan:summary class: summarycode.summarizer:ScanSummary
codebase_attributes: summary
resource_attributes:
sort_order: 2
required_plugins:

(continues on next page)

3.1. Command Line Interface Reference 37

ScanCode-Toolkit

(continued from previous page)

options:
help_group: post-scan, name: summary: --summary
help: Summarize scans by providing declared origin information and other detected␣

→˓origin info at the codebase attribute level.
doc:
Summarize a scan at the codebase level.

--
Plugin: scancode_post_scan:tallies class: summarycode.tallies:Tallies
codebase_attributes: tallies
resource_attributes:
sort_order: 15
required_plugins:
options:
help_group: post-scan, name: tallies: --tallies
help: Compute tallies for license, copyright and other scans at the codebase level.

doc:
Compute tallies for license, copyright and other scans at the codebase level

--
Plugin: scancode_post_scan:tallies-by-facet class: summarycode.tallies:FacetTallies
codebase_attributes: tallies_by_facet
resource_attributes:
sort_order: 200
required_plugins:
options:
help_group: post-scan, name: tallies_by_facet: --tallies-by-facet
help: Compute tallies for license, copyright and other scans and group the results␣

→˓by facet.
doc:
Compute tallies for a scan at the codebase level, grouping by facets.

--
Plugin: scancode_post_scan:tallies-key-files class: summarycode.tallies:KeyFilesTallies
codebase_attributes: tallies_of_key_files
resource_attributes:
sort_order: 150
required_plugins:
options:
help_group: post-scan, name: tallies_key_files: --tallies-key-files
help: Compute tallies for license, copyright and other scans for key, top-level␣

→˓files. Key files are top-level codebase files such as COPYING, README and package␣
→˓manifests as reported by the --classify option "is_legal", "is_readme", "is_manifest"␣
→˓and "is_top_level" flags.
doc:
Compute tallies of a scan at the codebase level for only key files.

--

(continues on next page)

3.1. Command Line Interface Reference 38

ScanCode-Toolkit

(continued from previous page)

Plugin: scancode_post_scan:tallies-with-details class: summarycode.
→˓tallies:TalliesWithDetails
codebase_attributes: tallies
resource_attributes: tallies
sort_order: 100
required_plugins:
options:
help_group: post-scan, name: tallies_with_details: --tallies-with-details
help: Compute tallies of license, copyright and other scans at the codebase level,␣

→˓keeping intermediate details at the file and directory level.
doc:
Compute tallies of different scan attributes of a scan at the codebase level and
keep file and directory details.

The scan attributes that are tallied are:
- detected_license_expression
- copyrights
- holders
- authors
- programming_language
- packages

--
Plugin: scancode_pre_scan:classify class: summarycode.classify_plugin:FileClassifier
codebase_attributes:
resource_attributes: is_legal, is_manifest, is_readme, is_top_level, is_key_file
sort_order: 30
required_plugins:
options:
help_group: pre-scan, name: classify: --classify
help: Classify files with flags telling if the file is a legal, or readme or test␣

→˓file, etc.
doc:
Classify a file such as a COPYING file or a package manifest with a flag.

--
Plugin: scancode_pre_scan:facet class: summarycode.facet:AddFacet
codebase_attributes:
resource_attributes: facets
sort_order: 20
required_plugins:
options:
help_group: pre-scan, name: facet: --facet
help: Add the <facet> to files with a path matching <pattern>.

doc:
Assign one or more "facet" to each file (and NOT to directories). Facets are
a way to qualify that some part of the scanned code may be core code vs.
test vs. data, etc.

(continues on next page)

3.1. Command Line Interface Reference 39

ScanCode-Toolkit

(continued from previous page)

--
Plugin: scancode_pre_scan:ignore class: scancode.plugin_ignore:ProcessIgnore
codebase_attributes:
resource_attributes:
sort_order: 100
required_plugins:
options:
help_group: pre-scan, name: ignore: --ignore
help: Ignore files matching <pattern>.

help_group: pre-scan, name: include: --include
help: Include files matching <pattern>.

doc:
Include or ignore files matching patterns.

--
Plugin: scancode_scan:copyrights class: cluecode.plugin_copyright:CopyrightScanner
codebase_attributes:
resource_attributes: copyrights, holders, authors
sort_order: 6
required_plugins:
options:
help_group: primary scans, name: copyright: -c, --copyright
help: Scan <input> for copyrights.

doc:
Scan a Resource for copyrights.

--
Plugin: scancode_scan:emails class: cluecode.plugin_email:EmailScanner
codebase_attributes:
resource_attributes: emails
sort_order: 7
required_plugins:
options:
help_group: other scans, name: email: -e, --email
help: Scan <input> for emails.

help_group: scan options, name: max_email: --max-email
help: Report only up to INT emails found in a file. Use 0 for no limit.

doc:
Scan a Resource for emails.

--
Plugin: scancode_scan:generated class: summarycode.generated:GeneratedCodeDetector
codebase_attributes:
resource_attributes: is_generated
sort_order: 50
required_plugins:
options:
help_group: other scans, name: generated: --generated
help: Classify automatically generated code files with a flag.

(continues on next page)

3.1. Command Line Interface Reference 40

ScanCode-Toolkit

(continued from previous page)

doc:
Tag a file as generated.

--
Plugin: scancode_scan:info class: scancode.plugin_info:InfoScanner
codebase_attributes:
resource_attributes: date, sha1, md5, sha256, mime_type, file_type, programming_

→˓language, is_binary, is_text, is_archive, is_media, is_source, is_script
sort_order: 0
required_plugins:
options:
help_group: other scans, name: info: -i, --info
help: Scan <input> for file information (size, checksums, etc).

doc:
Scan a file Resource for miscellaneous information such as mime/filetype and
basic checksums.

--
Plugin: scancode_scan:licenses class: licensedcode.plugin_license:LicenseScanner
codebase_attributes: license_detections
resource_attributes: detected_license_expression, detected_license_expression_spdx,␣

→˓license_detections, license_clues, percentage_of_license_text
sort_order: 4
required_plugins:
options:
help_group: primary scans, name: license: -l, --license
help: Scan <input> for licenses.

help_group: scan options, name: license_score: --license-score
help: Do not return license matches with a score lower than this score. A number␣

→˓between 0 and 100.
help_group: scan options, name: license_text: --license-text
help: Include the detected licenses matched text.

help_group: scan options, name: license_text_diagnostics: --license-text-diagnostics
help: In the matched license text, include diagnostic highlights surrounding with␣

→˓square brackets [] words that are not matched.
help_group: scan options, name: license_diagnostics: --license-diagnostics
help: In license detections, include diagnostic details to figure out the license␣

→˓detection post processing steps applied.
help_group: scan options, name: license_url_template: --license-url-template
help: Set the template URL used for the license reference URLs. Curly braces ({})␣

→˓are replaced by the license key.
help_group: scan options, name: unknown_licenses: --unknown-licenses
help: [EXPERIMENTAL] Detect unknown licenses.

doc:
Scan a Resource for licenses.

--
Plugin: scancode_scan:packages class: packagedcode.plugin_package:PackageScanner
codebase_attributes: packages, dependencies

(continues on next page)

3.1. Command Line Interface Reference 41

ScanCode-Toolkit

(continued from previous page)

resource_attributes: package_data, for_packages
sort_order: 3
required_plugins: scan:licenses
options:
help_group: primary scans, name: package: -p, --package
help: Scan <input> for application package and dependency manifests, lockfiles and␣

→˓related data.
help_group: primary scans, name: system_package: --system-package
help: Scan <input> for installed system package databases.

help_group: documentation, name: list_packages: --list-packages
help: Show the list of supported package manifest parsers and exit.

doc:
Scan a Resource for Package data and report these as "package_data" at the
file level. Then create "packages" from these "package_data" at the top
level.

--
Plugin: scancode_scan:urls class: cluecode.plugin_url:UrlScanner
codebase_attributes:
resource_attributes: urls
sort_order: 8
required_plugins:
options:
help_group: other scans, name: url: -u, --url
help: Scan <input> for urls.

help_group: scan options, name: max_url: --max-url
help: Report only up to INT urls found in a file. Use 0 for no limit.

doc:
Scan a Resource for URLs.

--list-packages Option

This shows all the types of packages that can be scanned using Scancode. These are located in packagedcode i.e. Code
used to parse various package formats.

See the Supported package manifests and package datafiles page for more details and documentation automatically
generated using this data.

--print-options Option

This option prints the options selected for one specific scan command.

If we run this command:

scancode -clpieu --json-pp sample.json samples --classify --tallies --tallies-with-
→˓details --print-options

The output will be:

3.1. Command Line Interface Reference 42

ScanCode-Toolkit

Options:
classify: True
copyright: True
email: True
info: True
license: True
list_packages: None
output_json_pp: <unopened file 'sample.json' wb>
package: True
reindex_licenses: None
tallies: True
tallies_with_details: True
url: True

3.1.3 All Available Options

This section contains an exhaustive list of all Scancode options, arranged in various sections. The sections are as
follows:

• Basic Scan Options

• Core Scan Options

• Output Formats

• Controlling Output and Filters

• Pre-Scan Options

• Post-Scan Options

There’s also another section for extractcode options.

The order of the sections and all their options is the same as in the Help text, available in the command line.

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions, documenting a program’s options. For
example:

-c, --copyright Scan <input> for copyrights.

Sub-Options:

• --consolidate

-l, --license Scan <input> for licenses.

Sub-Options:

• --license-references

• --license-text

• --license-text-diagnostics

• --license-diagnostics

• --license-url-template TEXT

• --license-score INT

3.1. Command Line Interface Reference 43

ScanCode-Toolkit

• --license-clarity-score

• --consolidate

• --unknown-licenses

-p, --package Scan <input> for packages.

Sub-Options:

• --consolidate

--system-package Scan <input> for installed system package databases.

--package-only Scan <input> for system and application only for package metadata, without li-
cense/ copyright detection and package assembly.

-e, --email Scan <input> for emails.

Sub-Options:

• --max-email INT

-u, --url Scan <input> for urls.

Sub-Options:

• --max-url INT

-i, --info Scan for and include information such as:

• Size,

• Type,

• Date,

• Programming language,

• sha1 and md5 hashes,

• binary/text/archive/media/source/script flags

• Additional options through more CLI options

Sub-Options:

• --mark-source

Note: Unlike previous 2.x versions, -c, -l, and -p are not default. If any combination of these options are used,
ScanCode performs only that specific task, and not the others. scancode -l scans only for licenses, and doesn’t
scan for copyright/packages/general information/emails/urls. The only notable exception: a --package scan also has
license information for package manifests and top-level packages, which are derived regardless of --license option
being used.

Note: These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of scancode -c -i -p, you
can write scancode -cip and it will be the same.

--generated Classify automatically generated code files with a flag.

--max-email INT Report only up to INT emails found in a file. Use 0 for no limit. [Default: 50]

Sub-Option of: --email

3.1. Command Line Interface Reference 44

ScanCode-Toolkit

--max-url INT Report only up to INT urls found in a file. Use 0 for no limit. [Default: 50]

Sub-Option of: --url

--license-score INTEGER Do not return license matches with scores lower than this score. A number
between 0 and 100. [Default: 0] Here, a bigger number means a better match,
i.e. Setting a higher license score translates to a higher threshold (with equal or
smaller number of matches).

Sub-Option of: --license

--license-text Include the matched text for the detected licenses in the output report.

Sub-Option of: --license

Sub-Options:

• --license-text-diagnostics

--license-url-template TEXT Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key. [Default:
default: https://scancode-licensedb.aboutcode.org/{}]

Sub-Option of: --license

--license-text-diagnostics In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of: --license and --license-text

--license-diagnostics In license detections, include diagnostic details to figure out the license detection
post processing steps applied.

Sub-Option of: --license

--unknown-licenses [EXPERIMENTAL] Detect unknown licenses.

Sub-Option of: --license

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found in an extracted archive
are extracted recursively by default. Extraction is done in-place in a directory named ‘-extract’ side-by-side with an
archive.

To extract the packages in the samples directory

extractcode samples

This extracts the zlib.tar.gz package:

3.1. Command Line Interface Reference 45

https://scancode-licensedb.aboutcode.org

ScanCode-Toolkit

--shallow Do not extract recursively nested archives (e.g. Not archives in archives).

--verbose Print verbose file-by-file progress messages.

--quiet Do not print any summary or progress message.

-h, --help Show the extractcode help message and exit.

--about Show information about ScanCode and licensing and exit.

--version Show the version and exit.

scancode-reindex-licenses Usage

Usage: scancode-reindex-licenses [OPTIONS]

Reindex scancode licenses and exit

Options

--all-languages [EXPERIMENTAL] Rebuild the license index including texts all lan-
guages (and not only English) and exit.

--only-builtin Rebuild the license index excluding any additional license directory
or additional license plugins which were added previously, i.e. with
only builtin scancode license and rules.

--additional-directory DIR Include this directory with additional custom licenses and li-
cense rules in the license detection index.

--load-dump Load all license and rules from their respective files and then dump
them back to those same files.

-h, --help Shows the options and explanations.

3.1. Command Line Interface Reference 46

ScanCode-Toolkit

All “Core” Scan Options

-n, --processes INTEGER Scan <input> using n parallel processes. [Default: 1]

-v, --verbose Print verbose file-by-file progress messages.

-q, --quiet Do not print summary or progress messages.

--timeout FLOAT Stop scanning a file if scanning takes longer than a timeout in seconds. [Default:
120]

--from-json Load codebase from one or more existing JSON scans.

--max-in-memory INTEGER Maximum number of files and directories scan details kept in memory
during a scan. Additional files and directories scan details above this number are
cached on-disk rather than in memory. Use 0 to use unlimited memory and disable
on-disk caching. Use -1 to use only on-disk caching. [Default: 10000]

--max-depth INTEGER Descend at most INTEGER levels of directories including and below the
starting point. INTEGER must be positive or zero for no limit. [Default: 0]

All Scan Output Options

--json FILE Write scan output as compact JSON to FILE.

--json-pp FILE Write scan output as pretty-printed JSON to FILE. This is one of the recommended
output formats and contains all the data scancode can show along with the YAML
output format.

--json-lines FILE Write scan output as JSON Lines to FILE.

--yaml FILE Write scan output as YAML to FILE. This is one of the recommended output
formats and contains all the data scancode can show along with the JSON output
format.

--csv FILE DEPRECATED: Write scan output as CSV to FILE. This option is deprecated and
will be replaced by new CSV and tabular output formats in the next ScanCode
release. Visit this issue for details, and to provide input and feedback: https://
github.com/nexB/scancode-toolkit/issues/3043

--html FILE Write scan output as HTML to FILE.

--custom-output Write scan output to FILE formatted with the custom Jinja template file.

Mandatory Sub-option:

• --custom-template FILE

--custom-template FILE Use this Jinja template FILE as a custom template.

Sub-Option of: --custom-output

--debian FILE Write scan output in machine-readable Debian copyright format to FILE.

--spdx-rdf FILE Write scan output as SPDX RDF to FILE.

--spdx-tv FILE Write scan output as SPDX Tag/Value to FILE.

--html-app FILE [DEPRECATED] Use scancode-workbench instead. Write scan output as a
mini HTML application to FILE.

3.1. Command Line Interface Reference 47

https://github.com/nexB/scancode-toolkit/issues/3043
https://github.com/nexB/scancode-toolkit/issues/3043

ScanCode-Toolkit

--cyclonedx FILE Write scan output as a CycloneDx 1.3 BOM in pretty-printed JSON format to
FILE

--cyclonedx-xml FILE Write scan output as a CycloneDx 1.3 BOM in pretty-printed XML format to
FILE

Warning: The html-app feature has been deprecated and you should use Scancode Workbench instead to visualize
scan results. The official Repository link. Also refer How to Visualize Scan results.

All “Output Control” Scan Options

--strip-root Strip the root directory segment of all paths.

--full-root Report full, absolute paths.

Note: The options --strip-root and --full-root can’t be used together, i.e. Any one option may be used in a
single scan.

Note: The default is to always include the last directory segment of the scanned path such that all paths have a common
root directory.

--ignore-author <pattern> Ignore a file (and all its findings) if an author contains a match to the
<pattern> regular expression.

--ignore-copyright-holder <pattern> Ignore a file (and all its findings) if a copyright holder contains
a match to the <pattern> regular expression.

Note: Note that this both the options --ignore-author and --ignore-copyright-holder will ignore a file even
if it has other scanned data such as a license or errors.

--only-findings Only return files or directories with findings for the requested scans. Files and di-
rectories without findings are omitted (file information is not treated as findings).

All “Pre-Scan” Options

--ignore <pattern> Ignore files matching <pattern>.

--include <pattern> Include files matching <pattern>.

--classify Classify files with flags telling if the file is a legal, or readme or test file, etc.

Sub-Options:

• --license-clarity-score

• --tallies-key-files

3.1. Command Line Interface Reference 48

https://github.com/nexB/scancode-workbench

ScanCode-Toolkit

--facet <facet_pattern> Here <facet_pattern> represents <facet>=<pattern>. Add the
<facet> to files with a path matching <pattern>.

Sub-Options:

• --tallies-by-facet

All “Post-Scan” Options

--mark-source Set the “is_source” flag to true for directories that contain over 90% of source files
as direct children and descendants. Count the number of source files in a directory
as a new “source_file_counts” attribute

Sub-Option of: --url

--consolidate Group resources by Packages or license and copyright holder and return those
groupings as a list of consolidated packages and a list of consolidated components.
The –consolidate option will be deprecated in a future version of scancode-toolkit
as top level packages now provide improved consolidated data.

Sub-Option of: --copyright, --license and --packages.

--filter-clues Filter redundant duplicated clues already contained in detected licenses, copyright
texts and notices.

--license-clarity-score Compute a summary license clarity score at the codebase level.

Sub-Option of: --classify.

--license-policy FILE Load a License Policy file and apply it to the scan at the Resource level.

--summary Summarize scans by providing declared origin information and other detected info
at the codebase attribute level.

--tallies Summarize license, copyright and other scans at the codebase level with occur-
rence counts.

Sub-Options:

• --tallies-by-facet

• --tallies-key-files

• --tallies-with-details

--tallies-by-facet Summarize license, copyright and other scans and group the results by facet.

Sub-Option of: --tallies and --facet.

--tallies-key-files Summarize license, copyright and other scans for key, top-level files, with occur-
rence counts. Key files are top-level codebase files such as COPYING, README
and package manifests as reported by the --classify option: “is_legal”,
“is_readme”, “is_manifest” and “is_top_level” flags.

Sub-Option of: --classify and --summary.

--tallies-with-details Summarize license, copyright and other scans at the codebase level with occur-
rence counts, while also keeping intermediate details at the file and directory level.

3.1. Command Line Interface Reference 49

ScanCode-Toolkit

3.1.4 How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed by default with Scancode.

Prerequisites

Refer to the Comprehensive Installation installation guide.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed by default with
Scancode Toolkit. Here’s the directory structure and respective files:

3.1. Command Line Interface Reference 50

ScanCode-Toolkit

We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the archive before running
the scan, to also scan the files inside this package.

3.1. Command Line Interface Reference 51

ScanCode-Toolkit

Performing Extraction

To extract the packages inside samples directory:

extractcode samples

This extracts the zlib.tar.gz package:

Note: Use the --shallow option to prevent recursive extraction of nested archives.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan, according to your
requirements.

1. The basic scan options, i.e. -c or --copyright, -l or --license, -p or --package, -e or --email, -u or
--url, and -i or --info cane be selected according to your requirements. If you do not need one specific type
of information (say, licenses), consider removing it because the more options you scan for, the longer it will take
for the scan to complete.

2. --license-score INTEGER is to be set if license matching accuracy is desired (Default is 0, and increasing
this means a more accurate match). Also, using --license-text includes the matched text to the result.

3. -n INTEGER option can be used to speed up the scan using multiple parallel processes.

4. --timeout FLOAT option can be used to skip files taking a long time to scan.

5. --ignore <pattern> can be used to skip certain group of files.

6. <OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output for specific
tasks/have requirements. Here we are using json as ScanCode Workbench imports json files only.

For the complete list of options, refer All Available Options.

3.1. Command Line Interface Reference 52

ScanCode-Toolkit

Running The Scan

Now, run the scan with the options decided:

scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
scan_start: 2019-09-24T203514.573671
scan_end: 2019-09-24T203545.649805
setup_scan:licenses: 4.30s
setup: 4.30s
scan: 26.62s
total: 31.14s

Removing temporary files...done.

Other Important Documentation

1. Type of Options

2. How to Run a Scan

3. Basic Tutorials

4. How-To Guides

5. Reference Docs

6. Contributing to Code Development

7. Contributing to the Documentation

8. Plugin Architecture

9. FAQ

10. Support

3.1. Command Line Interface Reference 53

ScanCode-Toolkit

3.1.5 Other available CLIs

scancode-reindex-licenses Usage

Usage: scancode-reindex-licenses [OPTIONS]

Reindex scancode licenses and exit

Options

--all-languages [EXPERIMENTAL] Rebuild the license index including texts all lan-
guages (and not only English) and exit.

--only-builtin Rebuild the license index excluding any additional license directory
or additional license plugins which were added previously, i.e. with
only builtin scancode license and rules.

--additional-directory DIR Include this directory with additional custom licenses and li-
cense rules in the license detection index.

--load-dump Load all license and rules from their respective files and then dump
them back to those same files.

-h, --help Shows the options and explanations.

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found in an extracted archive
are extracted recursively by default. Extraction is done in-place in a directory named ‘-extract’ side-by-side with an
archive.

To extract the packages in the samples directory

extractcode samples

This extracts the zlib.tar.gz package:

3.1. Command Line Interface Reference 54

ScanCode-Toolkit

--shallow Do not extract recursively nested archives (e.g. Not archives in archives).

--verbose Print verbose file-by-file progress messages.

--quiet Do not print any summary or progress message.

-h, --help Show the extractcode help message and exit.

--about Show information about ScanCode and licensing and exit.

--version Show the version and exit.

scancode-reindex-licenses command

ScanCode maintains a license index to search for and detect licenses. When Scancode is configured for the first time,
a license index is built and used in every scan thereafter.

This scancode-reindex-licenses command rebuilds the license index. Running this command displays the fol-
lowing message to the terminal:

Checking and rebuilding the license index...

This has several CLI options as follows:

--additional-directory Option:

The --additional-directory option allows the user to include additional directories of licenses to use in license
detection.

This command only needs to be run once for each set of additional directories, in all subsequent runs of Scancode with
the same directories all the licenses in the directories will be cached and used in License detection. But reindexing
removes these directories, if they aren’t reintroduced as additional directories.

The directory structure should look something like this:

3.1. Command Line Interface Reference 55

ScanCode-Toolkit

additional_license_directory/
licenses/

example-installed-1.LICENSE
example-installed-1.yaml

rules/
example-installed-1.RULE
example-installed-1.yaml

Here is an example of reindexing the license cache using the --additional-directory PATH option with a single
directory:

scancode-reindex-licenses --additional-directory tests/licensedcode/data/additional_
→˓licenses/additional_dir/

You can also include multiple directories like so:

scancode-reindex-licenses --additional-directory /home/user/external_licenses/external1 -
→˓-additional-directory /home/user/external_licenses/external2

If you want to continue running scans with /home/user/external_licenses/external1 and /home/user/
external_licenses/external2, you can simply run scans after the command above reindexing with those direc-
tories and they will be included.

scancode -l --license-text --json-pp output.json samples

However, if you wanted to run a scan with a new set of directories, such as home/user/external_licenses/
external1 and home/user/external_licenses/external3, you would need to reindex the license index with
those directories as parameters:

scancode --additional-directory /home/user/external_licenses/external1 --additional-
→˓directory /home/user/external_licenses/external3

Note: Adding licenses/rules from an additional directory is not permanent. Another reindexing without the additional
directory option would just use the builtin scancode licenses and rules, and will not have these additonal licenses/rules
anymore.

Note: You can also install external licenses through a plugin for better reproducibility and distribution of those
license/rules for use in conjunction with scancode-toolkit licenses. See How to install a plugin containing external
licenses and/or rules

--only-builtin Option:

Rebuild the license index excluding any additional license directory or additional license plugins which were added
previously, i.e. with only builtin scancode license and rules.

This is applicable when there are additional license plugins installed already and you want to reindex the licenses
without these licenses from the additional plugins.

Note: Running the --only-builtin command won’t get rid of the installed license plugins, it would just reindex
without the licenses from these plugins for once. Another reindex afterwards without this option would bring back the

3.1. Command Line Interface Reference 56

ScanCode-Toolkit

licenses from the plugins again in the index.

--all-languages Option:

Rebuild the license index including texts all languages (and not only English) and exit. This is an EXPERIMENTAL
option.

--load-dump Option

Load all licenses and rules from their respective files and then dump them to their respective files. This is done to make
small formatting changes across all licenses and rules, to be consistent across them.

3.1.6 Basic Options

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions, documenting a program’s options. For
example:

-c, --copyright Scan <input> for copyrights.

Sub-Options:

• --consolidate

-l, --license Scan <input> for licenses.

Sub-Options:

• --license-references

• --license-text

• --license-text-diagnostics

• --license-diagnostics

• --license-url-template TEXT

• --license-score INT

• --license-clarity-score

• --consolidate

• --unknown-licenses

-p, --package Scan <input> for packages.

Sub-Options:

• --consolidate

--system-package Scan <input> for installed system package databases.

--package-only Scan <input> for system and application only for package metadata, without li-
cense/ copyright detection and package assembly.

3.1. Command Line Interface Reference 57

ScanCode-Toolkit

-e, --email Scan <input> for emails.

Sub-Options:

• --max-email INT

-u, --url Scan <input> for urls.

Sub-Options:

• --max-url INT

-i, --info Scan for and include information such as:

• Size,

• Type,

• Date,

• Programming language,

• sha1 and md5 hashes,

• binary/text/archive/media/source/script flags

• Additional options through more CLI options

Sub-Options:

• --mark-source

Note: Unlike previous 2.x versions, -c, -l, and -p are not default. If any combination of these options are used,
ScanCode performs only that specific task, and not the others. scancode -l scans only for licenses, and doesn’t
scan for copyright/packages/general information/emails/urls. The only notable exception: a --package scan also has
license information for package manifests and top-level packages, which are derived regardless of --license option
being used.

Note: These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of scancode -c -i -p, you
can write scancode -cip and it will be the same.

--generated Classify automatically generated code files with a flag.

--max-email INT Report only up to INT emails found in a file. Use 0 for no limit. [Default: 50]

Sub-Option of: --email

--max-url INT Report only up to INT urls found in a file. Use 0 for no limit. [Default: 50]

Sub-Option of: --url

--license-score INTEGER Do not return license matches with scores lower than this score. A number
between 0 and 100. [Default: 0] Here, a bigger number means a better match,
i.e. Setting a higher license score translates to a higher threshold (with equal or
smaller number of matches).

Sub-Option of: --license

--license-text Include the matched text for the detected licenses in the output report.

Sub-Option of: --license

Sub-Options:

3.1. Command Line Interface Reference 58

ScanCode-Toolkit

• --license-text-diagnostics

--license-url-template TEXT Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key. [Default:
default: https://scancode-licensedb.aboutcode.org/{}]

Sub-Option of: --license

--license-text-diagnostics In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of: --license and --license-text

--license-diagnostics In license detections, include diagnostic details to figure out the license detection
post processing steps applied.

Sub-Option of: --license

--unknown-licenses [EXPERIMENTAL] Detect unknown licenses.

Sub-Option of: --license

--copyright Option

The --copyright option detects copyright statements in files.

It adds the following resource-level attributes:

1. copyrights: This is a data mapping with the following attributes: copyright containing the whole
copyright value, with start_line and end_line containing the line numbers in the file where this
copyright value was detected.

2. holders: This is a data mapping with the following attributes: holder containing the whole copy-
right holder value, with start_line and end_line containing the line numbers in the file where
this copyright value was detected.

3. authors: This is a data mapping with the following attributes: author containing the whole copy-
right author value, with start_line and end_line containing the line numbers in the file where
this copyright value was detected.

Example:

#
Copyright (c) 2010 Patrick McHardy All rights reserved.
Authors: Patrick McHardy <kaber@trash.net>

The above lines when scanned for copyrights generates the following results for the discussed attributes:

{
"copyrights": [

{
"copyright": "Copyright (c) 2010 Patrick McHardy",
"start_line": 2,
"end_line": 2

}
],
"holders": [

(continues on next page)

3.1. Command Line Interface Reference 59

https://scancode-licensedb.aboutcode.org

ScanCode-Toolkit

(continued from previous page)

{
"holder": "Patrick McHardy",
"start_line": 2,
"end_line": 2

}
],
"authors": [

{
"author": "Patrick McHardy <kaber@trash.net>",
"start_line": 3,
"end_line": 3

}
],

}

--license Option

The --license option detects various kinds of license texts, notices, tags, references and other specialized
license declarations like the SPDX license identifier in files.

It adds the following attributes to the file data:

1. license_detections: This has a mapping of license detection data with the license expression,
detection log and license matches. And the license matches contain the license expression for the
match, score, more details for the license detected and the rule detected, along with the match text
optionally.

2. license_clues: This is a list of license matches, same as matches in license_detections.
These are mere license clues and not perfect detections.

3. detected_license_expression: This is a scancode license expression string.

4. detected_license_expression_spdx: This is the SPDX version of
detected_license_expression.

5. percentage_of_license_text: This has a percentage number which denotes what percentage of
the resource scanned has legalese words.

Example:

License: Apache-2.0

If we run license detection (with --license-text) on the above text we get the following result for the
resource attributes added by the license detection:

{
"path": "apache-2.0.txt",
"type": "file",
"detected_license_expression": "apache-2.0",
"detected_license_expression_spdx": "Apache-2.0",
"license_detections": [

{
"license_expression": "apache-2.0",

(continues on next page)

3.1. Command Line Interface Reference 60

ScanCode-Toolkit

(continued from previous page)

"matches": [
{

"score": 100.0,
"start_line": 1,
"end_line": 1,
"matched_length": 4,
"match_coverage": 100.0,
"matcher": "1-hash",
"license_expression": "apache-2.0",
"rule_identifier": "apache-2.0_65.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/

→˓develop/src/licensedcode/data/rules/apache-2.0_65.RULE",
"matched_text": "License: Apache-2.0"

}
],
"identifier": "apache_2_0-ec759ae0-ea5a-f138-793e-388520e080c0"

}
],
"license_clues": [],
"percentage_of_license_text": 100.0,
"scan_errors": []

}

We also have top level unique license detections with the same identifier referencing all occurrences of
this license detection and counts:

{
"license_detections": [

{
"identifier": "apache_2_0-ec759ae0-ea5a-f138-793e-388520e080c0",
"license_expression": "apache-2.0",
"detection_count": 1

}
]

}

--package Option

The --package option detects various package manifests, lockfiles and package-like data and then assem-
bles codebase level packages and dependencies from these package data detected at files. Also tags files
if they are part of the packages.

It adds the following attributes to the file data:

1. package_data: This is a mapping of package data parsed and retrieved from the file, with the fields
for the package URL, license detections, copyrights, dependencies, and the various URLs.

2. for_packages: This is a list of strings pointing to the packages that the files is a part of. The string
is basically a packageURL with an UUID as a qualifier.

It adds the following attributes to the top-level in results:

3.1. Command Line Interface Reference 61

ScanCode-Toolkit

1. packages: This is a mapping of package data with all the atrributes present in file level
package_data with the following extra attributes: package_uid, datafile_paths and
datasource_ids.

2. dependencies: This is a mapping of dependency data from all the lockfiles or package manifests
in the scan.

Example:

The following scan result was generated from scanning a package manifest:

{
"dependencies": [

{
"purl": "pkg:bower/get-size",
"extracted_requirement": "~1.2.2",
"scope": "dependencies",
"is_runtime": true,
"is_optional": false,
"is_resolved": false,
"resolved_package": {},
"extra_data": {},
"dependency_uid": "pkg:bower/get-size?uuid=fixed-uid-done-for-

→˓testing-5642512d1758",
"for_package_uid": "pkg:bower/blue-leaf?uuid=fixed-uid-done-for-

→˓testing-5642512d1758",
"datafile_path": "bower.json",
"datasource_id": "bower_json"

}
],
"packages": [

{
"type": "bower",
"namespace": null,
"name": "blue-leaf",
"version": null,
"qualifiers": {},
"subpath": null,
"primary_language": null,
"description": "Physics-like animations for pretty particles",
"release_date": null,
"parties": [

{
"type": null,
"role": "author",
"name": "Betty Beta <bbeta@example.com>",
"email": null,
"url": null
}

],
"keywords": [

"motion",
"physics",
"particles"

],
(continues on next page)

3.1. Command Line Interface Reference 62

ScanCode-Toolkit

(continued from previous page)

"homepage_url": null,
"download_url": null,
"size": null,
"sha1": null,
"md5": null,
"sha256": null,
"sha512": null,
"bug_tracking_url": null,
"code_view_url": null,
"vcs_url": null,
"copyright": null,
"declared_license_expression": "mit",
"declared_license_expression_spdx": "MIT",
"license_detections": [

{
"license_expression": "mit",
"matches": [

{
"score": 100.0,
"start_line": 1,
"end_line": 1,
"matched_length": 1,
"match_coverage": 100.0,
"matcher": "1-spdx-id",
"license_expression": "mit",
"rule_identifier": "spdx-license-identifier: mit",
"rule_url": null,
"rule_relevance": 100,
"matched_text": "MIT"

}
],
"identifier": "apache_2_0-ec759abc-ea5a-2a38-793e-

→˓312340e080c0"
}

],
"other_license_expression": null,
"other_license_expression_spdx": null,
"other_license_detections": [],
"extracted_license_statement": "MIT",
"notice_text": null,
"source_packages": [],
"extra_data": {},
"repository_homepage_url": null,
"repository_download_url": null,
"api_data_url": null,
"package_uid": "pkg:bower/blue-leaf?uuid=fixed-uid-done-for-

→˓testing-5642512d1758",
"datafile_paths": [

"bower.json"
],
"datasource_ids": [

"bower_json"

(continues on next page)

3.1. Command Line Interface Reference 63

ScanCode-Toolkit

(continued from previous page)

],
"purl": "pkg:bower/blue-leaf"

}
],
"files": [

{
"path": "bower.json",
"type": "file",
"package_data": [

{
"type": "bower",
"namespace": null,
"name": "blue-leaf",
"version": null,
"qualifiers": {},
"subpath": null,
"primary_language": null,
"description": "Physics-like animations for pretty␣

→˓particles",
"release_date": null,
"parties": [

{
"type": null,
"role": "author",
"name": "Betty Beta <bbeta@example.com>",
"email": null,
"url": null

}
],
"keywords": [

"motion",
"physics",
"particles"

],
"homepage_url": null,
"download_url": null,
"size": null,
"sha1": null,
"md5": null,
"sha256": null,
"sha512": null,
"bug_tracking_url": null,
"code_view_url": null,
"vcs_url": null,
"copyright": null,
"declared_license_expression": "mit",
"declared_license_expression_spdx": "MIT",
"license_detections": [

{
"license_expression": "mit",
"matches": [

{

(continues on next page)

3.1. Command Line Interface Reference 64

ScanCode-Toolkit

(continued from previous page)

"score": 100.0,
"start_line": 1,
"end_line": 1,
"matched_length": 1,
"match_coverage": 100.0,
"matcher": "1-spdx-id",
"license_expression": "mit",
"rule_identifier": "spdx-license-

→˓identifier: mit",
"rule_url": null,
"rule_relevance": 100,
"matched_text": "MIT"

}
],
"identifier": "apache_2_0-ec759abc-ea5a-2a38-793e-

→˓312340e080c0"
}

],
"other_license_expression": null,
"other_license_expression_spdx": null,
"other_license_detections": [],
"extracted_license_statement": "MIT",
"notice_text": null,
"source_packages": [],
"file_references": [],
"extra_data": {},
"dependencies": [

{
"purl": "pkg:bower/get-size",
"extracted_requirement": "~1.2.2",
"scope": "dependencies",
"is_runtime": true,
"is_optional": false,
"is_resolved": false,
"resolved_package": {},
"extra_data": {}

}
],
"repository_homepage_url": null,
"repository_download_url": null,
"api_data_url": null,
"datasource_id": "bower_json",
"purl": "pkg:bower/blue-leaf"

}
],
"for_packages": [

"pkg:bower/blue-leaf?uuid=fixed-uid-done-for-testing-
→˓5642512d1758"

],
"scan_errors": []

}
]

(continues on next page)

3.1. Command Line Interface Reference 65

ScanCode-Toolkit

(continued from previous page)

}

--info Option

The --info option obtains miscellaneous information about the file being scanned such as mime/filetype,
checksums, programming language, and various boolean flags.

It adds the following attributes to the file data:

1. date: last modified data of the file.

2. sha1, md5 and sha256: file checksums of various algorithms.

3. mime_type and file_type: basic file type and mime type/subtype information obtained from lib-
magic.

4. programming_language: programming language based on extensions.

5. is_binary, is_text, is_archive, is_media, is_source, and is_script: various boolean
flags with misc. information about the file.

--email Option

The --email option detects and reports email adresses present in scanned files.

It adds the emails attribute to the file data with the following attributes: email with the actual email that
was present in the file, start_line and end_line to be able to locate where the email was detected in
the file.

--url Option

The --url option detects and reports URLs present in scanned files.

It adds the urls attribute to the file data with the following attributes: url with the actual URL that was
present in the file, start_line and end_line to be able to locate where the URL was detected in the file.

--generated Option

The --generated option classifies automatically generated code files with a flag.

An example of using --generated in a scan:

scancode -clpieu --json-pp output.json samples --generated

In the results, for each file the following attribute is added with it’s corresponding true/false value

3.1. Command Line Interface Reference 66

ScanCode-Toolkit

"is_generated": true

Classification of a file being generated or not is done based on the first few lines having usually encountered
generated keywords.

--max-email Option

Dependency
The option --max-email is a sub-option of and requires the option --email.

If in the files that are scanned, in individual files, there are a lot of emails (i.e lists) which are unneces-
sary and clutter the scan results, --max-email option can be used to report emails only up to a limit in
individual files.

Some important INTEGER values of the --max-email INTEGER option:

• 0 - No limit, include all emails.

• 50 - Default.

An example usage:

scancode -clpieu --json-pp output.json samples --max-email 5

This only reports 5 email addresses per file and ignores the rest.

--max-url Option

Dependency
The option --max-url is a sub-option of and requires the option --url.

If in the files that are scanned, in individual files, there are a lot of links to other websites (i.e url lists)
which are unnecessary and clutter the scan results, --max-url option can be used to report urls only up
to a limit in individual files.

Some important INTEGER values of the --max-url INTEGER option:

• 0 - No limit, include all urls.

• 50 - Default.

An example usage:

scancode -clpieu --json-pp output.json samples --max-url 10

This only reports 10 urls per file and ignores the rest.

3.1. Command Line Interface Reference 67

ScanCode-Toolkit

--license-score Option

Dependency
The option --license-score is a sub-option of and requires the option --license.

License matching strictness, i.e. How closely matched licenses are detected in a scan, can be modified by
using this --license-score option.

Some important INTEGER values of the --license-score INTEGER option:

• 0 - Default and Lowest Value, All matches are reported.

• 100 - Highest Value, Only licenses with a much better match are reported

Here, a bigger number means a better match, i.e. Setting a higher license score translates to a higher
threshold for matching licenses (with equal or less number of license matches).

An example usage:

scancode -clpieu --json-pp output.json samples --license-score 70

Here’s the license results on setting the integer value to 100, Vs. the default value 0. This is visualized
using ScanCode workbench in the License Info Dashboard.

Table 1: License scan results of Samples Directory.

Fig. 1: License Score 0 (Default). Fig. 2: License Score 100.

3.1. Command Line Interface Reference 68

ScanCode-Toolkit

--license-text Option

Dependency
The option --license-text is a sub-option of and requires the option --license.

Sub-Option
The option --license-text-diagnostics is a sub-option of --license-text.

With the --license-text option, the scan results attribute “matched text” includes the matched text for
the detected license.

An example Scan:

scancode -cplieu --json-pp output.json samples --license-text

An example matched text included in the results is as follows:

"matched_text":
" This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu"

• The file in which this license was detected: samples/arch/zlib.tar.gz-extract/zlib-1.2.
8/zlib.h

• License name: “ZLIB License”

3.1. Command Line Interface Reference 69

ScanCode-Toolkit

--license-url-template Option

Dependency
The option --license-url-template is a sub-option of and requires the option --license.

The --license-url-template option sets the template URL used for the license reference URLs.

The default template URL is : [https://scancode-licensedb.aboutcode.org/{}] In a template URL, curly
braces ({}) are replaced by the license key.

So, by default the license reference URL points to the LicenseDB page for that license.

A scan example using the --license-url-template TEXT option

scancode -clpieu --json-pp output.json samples --license-url-template https://
→˓github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/
→˓{}.LICENSE

In a normal scan, reference url for “ZLIB License” is as follows:

"reference_url": "https://scancode-licensedb.aboutcode.org/zlib",

After using the option in the following manner:

``--license-url-template https://github.com/nexB/scancode-toolkit/tree/develop/
→˓src/licensedcode/data/licenses/{}.LICENSE``

the reference URL changes to this zlib.LICENSE file:

"reference_url": "https://github.com/nexB/scancode-toolkit/blob/develop/src/
→˓licensedcode/data/licenses/zlib.LICENSE",

The reference URL changes for all detected licenses in the scan, across the scan result file.

--license-text-diagnostics Option

Dependency
The option --license-text-diagnostics is a sub-option of and requires the options --license and
--license-text.

In the matched license text, include diagnostic highlights surrounding with square brackets [] words that
are not matched.

In a normal scan, whole lines of text are included in the matched license text, including parts that are
possibly unmatched.

An example Scan:

scancode -cplieu --json-pp output.json samples --license-text --license-text-
→˓diagnostics

3.1. Command Line Interface Reference 70

https://scancode-licensedb.aboutcode.org
https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/licenses/zlib.LICENSE

ScanCode-Toolkit

Running a scan on the samples directory with --license-text --license-text-diagnostics op-
tions, causes the following difference in the scan result of the file samples/JGroups/licenses/
bouncycastle.txt.

Without Diagnostics:

"matched_text":
"License Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
(http://www.bouncycastle.org) Permission is hereby granted, free of charge, to␣
→˓any person
obtaining a copy of this software and associated documentation files (the \
→˓"Software\"),
to deal in the Software without restriction

With Diagnostics on:

"matched_text":
"License [Copyright] ([c]) [2000] - [2006] [The] [Legion] [Of] [The] [Bouncy]␣
→˓[Castle]
([http]://[www].[bouncycastle].[org]) Permission is hereby granted, free of␣
→˓charge, to any person
obtaining a copy of this software and associated documentation files (the \
→˓"Software\"),
to deal in the Software without restriction,

--license-diagnostics Option

Dependency
The option --license-diagnostics is a sub-option of and requires the option --license

On using the --license-diagnostics option on a license scan there is the detection_log attribute
added to license detections with diagnostics information about the license detection post-processing steps
which are used to create license detections from license matches.

Consider the following text:

License
All code, unless stated otherwise, is dual-licensed under
[`WTFPL`](http://www.wtfpl.net/txt/copying/) and
[`MIT`](https://opensource.org/licenses/MIT).

If we run a license scan with the --license-diagnostics option enabled, we have the following license
detection results:

{
"path": "README.md",
"type": "file",
"detected_license_expression": "wtfpl-2.0 AND mit",
"detected_license_expression_spdx": "WTFPL AND MIT",
"license_detections": [

(continues on next page)

3.1. Command Line Interface Reference 71

ScanCode-Toolkit

(continued from previous page)

{
"license_expression": "wtfpl-2.0 AND mit",
"matches": [

{
"score": 100.0,
"start_line": 43,
"end_line": 43,
"matched_length": 3,
"match_coverage": 100.0,
"matcher": "2-aho",
"license_expression": "unknown-license-reference",
"rule_identifier": "lead-in_unknown_30.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/

→˓develop/src/licensedcode/data/rules/lead-in_unknown_30.RULE",
"matched_text": "dual-licensed under [`

},
{

"score": 50.0,
"start_line": 43,
"end_line": 43,
"matched_length": 1,
"match_coverage": 100.0,
"matcher": "2-aho",
"license_expression": "wtfpl-2.0",
"rule_identifier": "spdx_license_id_wtfpl_for_wtfpl-2.0.

→˓RULE",
"rule_relevance": 50,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/

→˓develop/src/licensedcode/data/rules/spdx_license_id_wtfpl_for_wtfpl-2.0.RULE
→˓",

"matched_text": "WTFPL"
},
{

"score": 100.0,
"start_line": 43,
"end_line": 43,
"matched_length": 3,
"match_coverage": 100.0,
"matcher": "2-aho",
"license_expression": "wtfpl-2.0",
"rule_identifier": "wtfpl-2.0_27.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/

→˓develop/src/licensedcode/data/rules/wtfpl-2.0_27.RULE",
"matched_text": "www.wtfpl.net/"

},
{

"score": 100.0,
"start_line": 43,
"end_line": 43,
"matched_length": 6,

(continues on next page)

3.1. Command Line Interface Reference 72

ScanCode-Toolkit

(continued from previous page)

"match_coverage": 100.0,
"matcher": "2-aho",
"license_expression": "mit",
"rule_identifier": "mit_64.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/

→˓develop/src/licensedcode/data/rules/mit_64.RULE",
"matched_text": "MIT`](https://opensource.org/licenses/

→˓MIT)."
}

],
"detection_log": [

"unknown-intro-followed-by-match"
],
"identifier": "wtfpl_2_0_and_mit-e5642b07-705c-9730-80ab-

→˓f5ed0565be28"
}

],
"license_clues": [],
"percentage_of_license_text": 8.18,
"scan_errors": []

}

Here from the "detection_log": ["unknown-intro-followed-by-match"] added diagnostics in-
formation we learn that there was an unknown intro license match, followed by proper detections, so we
conclude the unknown intro to be an introduction to the following license and hence conclude the license
from the license matches after the unknown detection.

3.1.7 Core Options

All “Core” Scan Options

-n, --processes INTEGER Scan <input> using n parallel processes. [Default: 1]

-v, --verbose Print verbose file-by-file progress messages.

-q, --quiet Do not print summary or progress messages.

--timeout FLOAT Stop scanning a file if scanning takes longer than a timeout in seconds. [Default:
120]

--from-json Load codebase from one or more existing JSON scans.

--max-in-memory INTEGER Maximum number of files and directories scan details kept in memory
during a scan. Additional files and directories scan details above this number are
cached on-disk rather than in memory. Use 0 to use unlimited memory and disable
on-disk caching. Use -1 to use only on-disk caching. [Default: 10000]

--max-depth INTEGER Descend at most INTEGER levels of directories including and below the
starting point. INTEGER must be positive or zero for no limit. [Default: 0]

3.1. Command Line Interface Reference 73

ScanCode-Toolkit

Comparing Progress Message Options

Default Progress Message:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1␣
→˓process(es)...
Building license detection index...Done.
Scanning files...
[####################] 43
Scanning done.
Scan statistics: 43 files scanned in 33s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1␣
→˓process(es).
Scanning speed: 1.4 files per sec.
Scanning time: 30s.
Indexing time: 2s.
Saving results.

Progress Message with ``–verbose``:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1␣
→˓process(es)...
Building license detection index...Done.
Scanning files...
Scanned: screenshot.png
Scanned: README
...
Scanned: zlib/dotzlib/ChecksumImpl.cs
Scanned: zlib/dotzlib/readme.txt
Scanned: zlib/gcc_gvmat64/gvmat64.S
Scanned: zlib/ada/zlib.ads
Scanned: zlib/infback9/infback9.c
Scanned: zlib/infback9/infback9.h
Scanned: arch/zlib.tar.gz
Scanning done.
Scan statistics: 43 files scanned in 29s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1␣
→˓process(es).
Scanning speed: 1.58 files per sec.
Scanning time: 27s.
Indexing time: 2s.
Saving results.

So, with --verbose enables, progress messages for individual files are shown.

With the ``–quiet`` option enabled, nothing is printed on the Command Line.

3.1. Command Line Interface Reference 74

ScanCode-Toolkit

--timeout Option

This option sets scan timeout for each file (and not the entire scan). If some file scan exceeds the specified
timeout, that file isn’t scanned anymore and the next file scanning starts. This helps avoiding very large/long
files, and saves time.

Also the number (timeout in seconds) to be followed by this option can be a floating point number, i.e.
1.5467.

--from-json Option

If you want to input scan results from a .json file, and run a scan again on those same files, with some other
options/output format, you can do so using the --from-json option.

An example scan command using --from-json:

scancode --from-json sample.json --json-pp sample_2.json --classify

This inputs the scan results from sample.json, runs the post-scan plugin --classify and outputs the
results for this scan to sample_2.json.

--max-in-memory Option

During a scan, as individual files are scanned, the scan details for those files are kept on memory till the
scan is completed. Then after the scan is completed, they are written in the specified output format.

Now, if the scan involves a very large number of files, they might not fit in the memory during the scan.
For this reason, disk-caching can be used for some/all of the files.

Some important INTEGER values of the --max-in-memory INTEGER option:

• 0 - Unlimited Memory, store all the file/directory scan results on memory

• -1 - Use only Disk-Caching, store all the file/directory scan results on disk

• 10000 - Default, store 10,000 file/directory scan results on memory and the rest on disk

An example usage:

scancode -clieu --json-pp sample.json samples --max-in-memory -1

--max_depth Option

Normally, the scan takes place upto the maximum level of nesting of directories possible. But using the
--max-depth option, you can specify the maximum level of directories to scan, including and below the
root location. This can reduce the time taken for the scan when deeper directories are not relevant.

Note that the --max-depth option will be ignored if you are scanning from a JSON file using the
--from-json option. In that case, the original depth is used.

An example usage:

3.1. Command Line Interface Reference 75

ScanCode-Toolkit

scancode -clieu --json-pp results.json samples --max-depth 3

This would scan the file samples/levelone/leveltwo/file but ignore samples/levelone/
leveltwo/levelthree/file

3.1.8 Scancode Output Formats

Scan results generated by Scancode are available in different formats, to be specified by the following options.

All Scan Output Options

--json FILE Write scan output as compact JSON to FILE.

--json-pp FILE Write scan output as pretty-printed JSON to FILE. This is one of the recommended
output formats and contains all the data scancode can show along with the YAML
output format.

--json-lines FILE Write scan output as JSON Lines to FILE.

--yaml FILE Write scan output as YAML to FILE. This is one of the recommended output
formats and contains all the data scancode can show along with the JSON output
format.

--csv FILE DEPRECATED: Write scan output as CSV to FILE. This option is deprecated and
will be replaced by new CSV and tabular output formats in the next ScanCode
release. Visit this issue for details, and to provide input and feedback: https://
github.com/nexB/scancode-toolkit/issues/3043

--html FILE Write scan output as HTML to FILE.

--custom-output Write scan output to FILE formatted with the custom Jinja template file.

Mandatory Sub-option:

• --custom-template FILE

--custom-template FILE Use this Jinja template FILE as a custom template.

Sub-Option of: --custom-output

--debian FILE Write scan output in machine-readable Debian copyright format to FILE.

--spdx-rdf FILE Write scan output as SPDX RDF to FILE.

--spdx-tv FILE Write scan output as SPDX Tag/Value to FILE.

--html-app FILE [DEPRECATED] Use scancode-workbench instead. Write scan output as a
mini HTML application to FILE.

--cyclonedx FILE Write scan output as a CycloneDx 1.3 BOM in pretty-printed JSON format to
FILE

--cyclonedx-xml FILE Write scan output as a CycloneDx 1.3 BOM in pretty-printed XML format to
FILE

Warning: The html-app feature has been deprecated and you should use Scancode Workbench instead to visualize
scan results. The official Repository link. Also refer How to Visualize Scan results.

3.1. Command Line Interface Reference 76

https://github.com/nexB/scancode-toolkit/issues/3043
https://github.com/nexB/scancode-toolkit/issues/3043
https://github.com/nexB/scancode-workbench

ScanCode-Toolkit

Note: You can Output Scan Results in two different file formats simultaniously in one Scan. An example - scancode
-clpieu --json-pp output.json --html output.html samples.

Note: All the examples and snippets that follows has been generated by scanning the samples folder distributed with
scancode-toolkit.

Print to stdout (Terminal)

If you want to format the output in JSON and print it at stdout, you can replace the JSON filename with a “-”, like
--json-pp - instead of --json-pp output.json.

The following command will output the scan results in JSON format to stdout (In the Terminal):

./scancode -clpieu --json-pp - samples/

--json FILE

Among the ScanCode Output Formats, json is the most important one, and is recommended over others.
Scancode Workbench and other applications that use Scancode Result data as input accept only the json
format.

The following code performs a scan on the samples directory, and publishes the results in json format:

scancode -clpieu --json output.json samples

Note: The default json format prints the whole report without line breaks/spaces/indentations, which
can be ugly to look at.

The entire JSON file is structured in the following manner:

At first some general information on the scan, what options were used, the number of files etc. And then
all the files follow.

{
"headers": [
{

"tool_name": "scancode-toolkit",
"tool_version": "3.1.1",
"options": {
"input": [
"samples/"

],
"--copyright": true,
"--email": true,
"--info": true,

(continues on next page)

3.1. Command Line Interface Reference 77

ScanCode-Toolkit

(continued from previous page)

"--json-pp": "output.json",
"--license": true,
"--package": true,
"--url": true

},
"notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS,␣

→˓WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No␣
→˓content created from\nScanCode should be considered or used as legal advice.␣
→˓Consult an Attorney\nfor any legal advice.\nScanCode is a free software code␣
→˓scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/
→˓scancode-toolkit/ for support and download.",

"start_timestamp": "2019-10-19T191117.292858",
"end_timestamp": "2019-10-19T191219.743133",
"message": null,
"errors": [],
"extra_data": {
"files_count": 36

}
}

],
"files": [
{
"path": "samples",
"type": "directory",
...
"scan_errors": []

},
{
"path": "samples/README",
"type": "file",
"name": "README",
"base_name": "README",

(continues on next page)

3.1. Command Line Interface Reference 78

ScanCode-Toolkit

(continued from previous page)

"extension": "",
"size": 236,
"date": "2019-02-12",
"sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
"md5": "effc6856ef85a9250fb1a470792b3f38",
"mime_type": "text/plain",
"file_type": "ASCII text",
"programming_language": null,
"is_binary": false,
"is_text": true,
"is_archive": false,
"is_media": false,
"is_source": false,
"is_script": false,
"license_detections": [],
"detected_license_expression": None,
"detected_license_expression_spdx": None,
"copyrights": [],
"holders": [],
"authors": [],
"package_data": [],
"for_packages": [],
"emails": [],
"urls": [],
"files_count": 0,
"dirs_count": 0,
"size_count": 0,
"scan_errors": []

},
{...},
...

]
}

--json-pp FILE

json-pp stands for JSON Pretty-Print format. In the previous format, i.e. Simple json, the whole output
is printed in one line, which isn’t well suited for getting information if you’re looking at the file itself (or
printing at stdout). So this option formats the output results in json but in a properly spaced and indented
manner, and is easy to look at.

The following code performs a scan on the samples directory, and publishes the results in json-pp format:

scancode -clpieu --json-pp output.json samples

A sample JSON output for an individual file will look like:

{
"path": "samples/zlib/iostream2/zstream.h",
"type": "file",

(continues on next page)

3.1. Command Line Interface Reference 79

ScanCode-Toolkit

(continued from previous page)

"name": "zstream.h",
"base_name": "zstream",
"extension": ".h",
"size": 9283,
"date": "2019-02-12",
"sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
"md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
"mime_type": "text/x-c++",
"file_type": "C++ source, ASCII text",
"programming_language": "C++",
"is_binary": false,
"is_text": true,
"is_archive": false,
"is_media": false,
"is_source": true,
"is_script": false,
"license_detections": [
"license-expression": "mit-old-style",
"matches": [

{
"license_expression": "mit-old-style",
"score": 100.0,
"rule_identifier": "mit-old-style_cmr-no_1.RULE",
"matcher": "2-aho",
"rule_length": 71,
"matched_length": 71,
"match_coverage": 100.0,
"rule_relevance": 100

}
]
"identifier": "mit-old-style-ec759ae0-1234-f138-793e-356789e080c0"

],
"detected_license_expressions": "mit-old-style",
"detected_license_expressions_spdx": "LicenseRef-scancode-mit-old-style",
"copyrights": [
{
"value": "Copyright (c) 1997 Christian Michelsen Research AS Advanced␣

→˓Computing",
"start_line": 3,
"end_line": 5

}
],
"holders": [
{
"value": "Christian Michelsen Research AS Advanced Computing",
"start_line": 3,
"end_line": 5

}
],
"authors": [],
"package_data": [],
"emails": [],

(continues on next page)

3.1. Command Line Interface Reference 80

ScanCode-Toolkit

(continued from previous page)

"urls": [
{

"url": "http://www.cmr.no/",
"start_line": 7,
"end_line": 7

}
],
"files_count": 0,
"dirs_count": 0,
"size_count": 0,
"scan_errors": []

},

This is the recommended Output option for Scancode Toolkit.

--json-lines FILE

ScanCode also has a --json-lines format option, where each report of a file scanned is formatted in
one line.

The following code performs a scan on the samples directory, and publishes the results in json-lines
format:

scancode -clpieu --json-lines output.json samples

Here is a sample line from a report generated by the jsonlines format:

{"files":[{"path":"samples/zlib/ada",licenses":[],"copyrights":[],"packages
→˓":[]}]}

The header information is also formatted in one line (i.e. The First Line of the file).

The whole Output file looks like:

{"headers":[{"tool_name":"scancode-toolkit","tool_version":"3.1.1","options":{
→˓"input":["samples/"],"--copyright":true,"--email":true,"--info":true,"--json-
→˓lines":"output.json","--license":true,"--package":true,"--url":true},"notice
→˓":"Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT␣
→˓WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content␣
→˓created from\nScanCode should be considered or used as legal advice. Consult␣
→˓an Attorney\nfor any legal advice.\nScanCode is a free software code␣
→˓scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/
→˓scancode-toolkit/ for support and download.","start_timestamp":"2019-10-
→˓19T210920.143831","end_timestamp":"2019-10-19T211052.048182","message":null,
→˓"errors":[],"extra_data":{"files_count":36}}]}
{"files":[{"path":"samples" ... "scan_errors":[]}]}
{"files":[{"path":"samples/README", ... "scan_errors":[]}]}
{"files":[{"path":"samples/screenshot.png", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract", ... "scan_errors":[]}]}

(continues on next page)

3.1. Command Line Interface Reference 81

ScanCode-Toolkit

(continued from previous page)

{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8", ... "scan_
→˓errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c", ...
→˓"scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h", ...
→˓"scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h", ...
→˓"scan_errors":[]}]}
{"files":[{"path":"samples/JGroups", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/EULA", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/LICENSE", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-1.1.txt", ... "scan_errors
→˓":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-2.0.txt", ... "scan_errors
→˓":[]}]}
{"files":[{"path":"samples/JGroups/licenses/bouncycastle.txt", ... "scan_errors
→˓":[]}]}
{"files":[{"path":"samples/JGroups/licenses/cpl-1.0.txt", ... "scan_errors":[]}
→˓]}
{"files":[{"path":"samples/JGroups/licenses/lgpl.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/FixedMembershipToken.java", ... "scan_
→˓errors":[]}]}
{"files":[{"path":"samples/JGroups/src/GuardedBy.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/ImmutableReference.java", ... "scan_
→˓errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RATE_LIMITER.java", ... "scan_errors
→˓":[]}]}
{"files":[{"path":"samples/JGroups/src/RouterStub.java", ... "scan_errors":[]}
→˓]}
{"files":[{"path":"samples/JGroups/src/RouterStubManager.java", ... "scan_
→˓errors":[]}]}
{"files":[{"path":"samples/JGroups/src/S3_PING.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/adler32.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zlib.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada/zlib.ads", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/AssemblyInfo.cs", ... "scan_errors":[]}
→˓]}
{"files":[{"path":"samples/zlib/dotzlib/ChecksumImpl.cs", ... "scan_errors":[]}
→˓]}
{"files":[{"path":"samples/zlib/dotzlib/LICENSE_1_0.txt", ... "scan_errors":[]}
→˓]}
{"files":[{"path":"samples/zlib/dotzlib/readme.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/gcc_gvmat64" ... "scan_errors":[]}]}

(continues on next page)

3.1. Command Line Interface Reference 82

ScanCode-Toolkit

(continued from previous page)

{"files":[{"path":"samples/zlib/gcc_gvmat64/gvmat64.S" ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream_test.cpp", ... "scan_errors
→˓":[]}]}

Note: This jsonlines format also omits other file information like type, name, date, extension, sha1
and md5 hashes, programming language etc.

Comparing Different json Output Formats

Default --json Output:

--json-pp Output:

--json-lines Output:

--spdx-rdf FILE

SPDX stands for “Software Package and Data Exchange” and is an open standard for communicating
software bill of material information (including components, licenses, copyrights, and security references).

The following code performs a scan on the samples directory, and publishes the results in spdx-rdf
format:

scancode -clpieu --spdx-rdf output.spdx samples

Learn more about SPDX specifications here and in this GitHub repository.

Here the file is structured as a dictionary of named properties and classes using W3C’s RDF Technology.

3.1. Command Line Interface Reference 83

https://spdx.org/
https://spdx.org/specifications
https://github.com/spdx/spdx-spec
https://www.w3.org/RDF/

ScanCode-Toolkit

3.1. Command Line Interface Reference 84

ScanCode-Toolkit

3.1. Command Line Interface Reference 85

ScanCode-Toolkit

--spdx-tv FILE

This format is another SPDX variant, with the output file being structured in the following manner:

The following code performs a scan on the samples directory, and publishes the results in spdx-tv format:

scancode -clpieu --spdx-tv output.spdx samples

A SPDX-TV file starts with:

Document Information

SPDXVersion: SPDX-2.1
DataLicense: CC0-1.0
DocumentComment: <text>Generated with ScanCode and provided on an "AS IS"␣
→˓BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. No content created from
ScanCode should be considered or used as legal advice. Consult an Attorney
for any legal advice.
ScanCode is a free software code scanning tool from nexB Inc. and others.
Visit https://github.com/nexB/scancode-toolkit/ for support and download.</
→˓text>

Creation Info

Creator: Tool: ScanCode 2.2.1
Created: 2019-09-22T21:55:04Z

After a section titled #Packages, a list follows.

Each File information is listed under a #File title, for each of the files.

• FileName
• FileChecksum

• LicenseConcluded
• LicenseInfoInFile

• FileCopyrightText

An example goes as follows:

After the files section, there’s a section for licenses under a #Licences title, with the following information
for each license:

• LicenseID • LicenseComment • ExtractedText

Here’s an example:

3.1. Command Line Interface Reference 86

ScanCode-Toolkit

3.1. Command Line Interface Reference 87

ScanCode-Toolkit

--html FILE

ScanCode supports formatting the Output result is a simple html format, to open with your favorite
browser. This helps quick visualization of the detected license/copyright and other main information in
the form of tables.

The following code performs a scan on the samples directory, and publishes the results in HTML format:

scancode -clpieu --html output.html samples

The HTML page generated has these following Tables:

• Copyright and Licenses Information
• File Information
• Package Information

• Licenses (Links to Dejacode/License
Homepage)

3.1. Command Line Interface Reference 88

ScanCode-Toolkit

3.1. Command Line Interface Reference 89

ScanCode-Toolkit

--html-app FILE

ScanCode also supports formatting the output in a HTML visualization tool, which is more helpful than
the standard HTML format.

Warning: The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link. Also refer How to Visualize Scan results.

The following code performs a scan on the samples directory, and publishes the results in html-app
format:

scancode -clpieu --html-app output.html samples

The Files scanned are shown in the left sidebar, and the section on the right contains separate tabs for the
following:

• License Summary
• Copyright Summary
• Clues

• File Details
• Packages

Note: The HTML app also contains a Search option to easily find what you are looking for. But the
HTML app output is deprecated and we recommend using scancode-workbench instead: https://github.
com/nexB/scancode-workbench.

3.1. Command Line Interface Reference 90

https://github.com/nexB/scancode-workbench
https://github.com/nexB/scancode-workbench
https://github.com/nexB/scancode-workbench

ScanCode-Toolkit

3.1. Command Line Interface Reference 91

ScanCode-Toolkit

--csv FILE

ScanCode can publish results in the useful .csv format.

Note: This option is deprecated and will be replaced by new CSV and tabular output formats in the next
ScanCode release. Visit https://github.com/nexB/scancode-toolkit/issues/3043 for details and to provide
inputs and feedback.

The following code performs a scan on the samples directory, and publishes the results in csv format:

scancode -lpceiu --csv sample.csv samples

The first line of the csv file contains the headings, and they are:

• Resource,
• type,
• name,
• base_name,
• extension,
• date,
• size,
• sha1,
• md5,
• files_count,
• mime_type,
• file_type,
• programming_language,
• is_binary,
• is_text,
• is_archive,
• is_media,
• is_source,
• is_script,

• scan_errors,
• license__key,
• license__score,
• license__short_name,
• license__category,
• license__owner,
• license__homepage_url,
• license__text_url,
• license__reference_url,
• license__spdx_license_key,
• license__spdx_url,
• matched_rule__identifier,
•

matched_rule__license_choice,
• matched_rule__licenses,
• copyright,
• copyright_holder,
• author,
• email,

• start_line,
• end_line,
• url,
• package__type,
• package__name,
• package__version,
• pack-

age__primary_language,
• package__summary,
• package__description,
• package__size,
• package__release_date,
• package__homepage_url,
• package__notes,
• pack-

age__bug_tracking_url,
• package__vcs_repository,
• pack-

age__copyright_top_level

Each subsequent line represents one element, i.e. can be any of the following:

• license • copyright • package • email • url

So if there’s multiple elements in a file, they are each given an entry with the details mentioned earlier.

--cyclonedx FILE

Scancode also supports the CycloneDx output format

Please note that this output format is only useful when scanning with the --package option

This output format is particularly useful if you want to process ScanCode results in downstream tools that
can’t process ScanCode’s native JSON output, but do support CycloneDx BOMs.

To run an example scan on the test resources try: ./scancode --package --cyclonedx=bom.json
tests/formattedcode/data/cyclonedx/simple

If you prefer XML output over JSON, please have a look at the --cyclonedx-xml option instead

3.1. Command Line Interface Reference 92

https://github.com/nexB/scancode-toolkit/issues/3043
https://cyclonedx.org/specification/overview/

ScanCode-Toolkit

--cyclonedx-xml FILE

This option allows outputting CycloneDx BOMs in XML format instead of JSON

To run an example scan on the test resources try: ./scancode --package --cyclonedx-xml=bom.
xml tests/formattedcode/data/cyclonedx/simple

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to create their own output
template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path to the custom
template to the --custom-template argument, or drop it in a folder to src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the particular data I wish to see.
In this case, I am only interested in the license and copyright data for this particular scan.

template.txt:
[

{% if files.license_copyright %}
{% for location, data in files.license_copyright.items() %}

{% for row in data %}
location:"{{ location }}",

(continues on next page)

3.1. Command Line Interface Reference 93

ScanCode-Toolkit

(continued from previous page)

{% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
{% endfor %}

{% endfor %}
{% endif %}

]

.. note::

File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$ scancode -clpeui --custom-output output.txt --custom-template template.txt samples
Scanning files...
[####################################] 46

Scanning done.

Now the results are saved in output.txt and we can easily view them with head output.txt:

[
location:"samples/JGroups/LICENSE",
copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

location:"samples/JGroups/LICENSE",
copyright:"copyrighted by the Free Software Foundation",

]

For a more elaborate template, refer this default template given with Scancode, to generate HTML output with the
--html output format option.

Documentation on Jinja templates.

3.1.9 Controlling Scancode Output and Filters

All “Output Control” Scan Options

--strip-root Strip the root directory segment of all paths.

--full-root Report full, absolute paths.

Note: The options --strip-root and --full-root can’t be used together, i.e. Any one option may be used in a
single scan.

Note: The default is to always include the last directory segment of the scanned path such that all paths have a common
root directory.

--ignore-author <pattern> Ignore a file (and all its findings) if an author contains a match to the
<pattern> regular expression.

--ignore-copyright-holder <pattern> Ignore a file (and all its findings) if a copyright holder contains
a match to the <pattern> regular expression.

3.1. Command Line Interface Reference 94

https://github.com/nexB/scancode-toolkit/blob/develop/src/formattedcode/templates/html/template.html
https://jinja.palletsprojects.com/en/2.10.x/

ScanCode-Toolkit

Note: Note that this both the options --ignore-author and --ignore-copyright-holder will ignore a file even
if it has other scanned data such as a license or errors.

--only-findings Only return files or directories with findings for the requested scans. Files and di-
rectories without findings are omitted (file information is not treated as findings).

--strip-root Vs. --full-root

For a default scan of the “samples” folder, this a comparison between the default, strip-root and
full-root options.

An example Scan

scancode -cplieu --json-pp output.json samples --full-root

These two changes only the “path” attribute of the file information. For this comparison we compare the
“path” attributes of the file LICENSE inside JGroups directory.

The default path:

"path": "samples/JGroups/LICENSE",

For the --full-root option, the path relative to the Root of your local filesystem.

"path": "/home/aboutcode/scancode-toolkit/samples/JGroups/LICENSE"

For the --strip-root option, the root directory (here /home/aboutcode/scancode-toolkit/
samples/) is removed from path :

"path": "JGroups/LICENSE"

Note: The options --strip-root and --full-root can’t be used together, i.e. Any one option may be
used in a single scan.

Note: The default is to always include the last directory segment of the scanned path such that all paths
have a common root directory.

--ignore-author <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and subsequently
included in the scan report. But if you want to run the scan on only some selective files, with some specific
common author then --ignore-author option can be used to do the same.

This scan ignores all files with authors matching the string “Apache Software Foundation”:

3.1. Command Line Interface Reference 95

ScanCode-Toolkit

scancode -cplieu --json-pp output.json samples --ignore-author "Apache␣
→˓Software Foundation"

More information on Glob Pattern Matching.

Note: Note that this both the options --ignore-author and --ignore-copyright-holderwill ignore
a file even if it has other scanned data such as a license or errors.

--ignore-copyright-holder <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and subsequently
included in the scan report. But if you want to run the scan on only some selective files, with some specific
common copyright holder then --ignore-copyright-holder option can be used to do the same.

This scan ignores all files with Copyright Holders matching the string “Free Software Foundation”:

scancode -cplieu --json-pp output.json samples --ignore-copyright-holder "Free␣
→˓Software Foundation"

More information on Glob Pattern Matching.

--only-findings Plugin

This option removes from the scan results, the files where nothing significant has been detected, like files
which doesn’t contain any licenses, copyrights, emails or urls (if requested in the scan options), and isn’t
a package.

An example Scan:

scancode -cplieu --json-pp output.json samples --only-findings

Note: This also changes in the result displayed, the number of files scanned.

For example, scanning the sample files (distributed by default with scancode-toolkit) without this option,
displays in it’s report information of 43 files. But after enabling this option, the result shows information
for only 31 files.

3.1.10 Pre-Scan Options

All “Pre-Scan” Options

--ignore <pattern> Ignore files matching <pattern>.

--include <pattern> Include files matching <pattern>.

--classify Classify files with flags telling if the file is a legal, or readme or test file, etc.

Sub-Options:

3.1. Command Line Interface Reference 96

ScanCode-Toolkit

• --license-clarity-score

• --tallies-key-files

--facet <facet_pattern> Here <facet_pattern> represents <facet>=<pattern>. Add the
<facet> to files with a path matching <pattern>.

Sub-Options:

• --tallies-by-facet

--ignore Option

In a scan, all files inside the directory specified as an input argument is scanned. But if there are some files
which you don’t want to scan, the --ignore option can be used to do the same.

A sample usage:

scancode --ignore "*.java" samples samples.json

Here, Scancode ignores files ending with .java, and continues with other files as usual.

More information on Glob Pattern Matching.

--include Option

In a normal scan, all files inside the directory specified as an input argument is scanned. But if you want
to run the scan on only some selective files, then --include option can be used to do the same.

A sample usage:

scancode --include "*.java" samples samples.json

Here, Scancode selectively scans files that has names ending with .java, and ignores all other files. This is
basically complementary in behavior to the --ignore option.

More information on Glob Pattern Matching.

--classify

Sub-Option
The options --license-clarity-score and --tallies-key-files are sub-options of --classify.
--license-clarity-score and --tallies-key-files are Post-Scan Options.

The --classify option can be used like:

scancode -clpieu --json-pp sample_facet.json samples --classify

3.1. Command Line Interface Reference 97

ScanCode-Toolkit

This option makes ScanCode further classify scanned files/directories, to determine whether they fall in
these following categories

• legal

• readme

• top-level

• manifest

A manifest file in computing is a file containing metadata for a group of accompanying files
that are part of a set or coherent unit.

• key-file

A KEY file is a generic file extension used by various programs when registering legal
copies of the software. It may be saved in a plain text format, but generally contains some
form of encrypted key string that authenticates the purchase and registers the software.

As in, to the JSON object of each file scanned, these extra attributes are added:

{
"is_legal": false,
"is_manifest": false,
"is_readme": true,
"is_top_level": true,
"is_key_file": true

}

--facet Option

Sub-Option
The option --summary-by-facet is a sub-option of --facet. --summary-by-facet is a Post-Scan
Option.

Valid <facet> values are:

• core,

• dev,

• tests,

• docs,

• data,

• examples.

You can use the --facet option in the following manner:

scancode -clpieu --json-pp sample_facet.json samples --facet dev="*.java" --
→˓facet dev="*.c"

This adds to the header object, the following attribute:

3.1. Command Line Interface Reference 98

ScanCode-Toolkit

"--facet": [
"dev=*.java",
"dev=*.c"

],

Here in this example, .java and .c files are marked as it belongs to facet dev.

As a result, .java file has the following attribute added:

"facets": [
"dev"

],

Note: All other files which are not dev are marked to be included in the facet core.

For each facet, the --facet option precedes the <facet>=<pattern> argument. For specifying multiple
facets, this whole part is repeated, including the --facet option.

For users who want to know What is a Facet?.

Glob Pattern Matching

All the Pre-Scan options use pattern matching, so the basics of Glob Pattern Matching is discussed briefly
below.

Glob pattern matching is useful for matching a group of files, by using patterns in their names. Then using
these patterns, files are grouped and treated differently as required.

Here are some rules from the Linux Manual on glob patterns. Refer the same for more detailed information.

A string is a wildcard pattern if it contains one of the characters ‘?’, ‘*’ or ‘[’. Globbing is the operation
that expands a wildcard pattern into the list of pathnames matching the pattern. Matching is defined by:

• A ‘?’ (not between brackets) matches any single character.

• A ‘*’ (not between brackets) matches any string, including the empty string.

• An expression “[. . .]” where the first character after the leading ‘[’ is not an ‘!’ matches a single
character, namely any of the characters enclosed by the brackets.

• There is one special convention: two characters separated by ‘-’ denote a range.

• An expression “[!. . .]” matches a single character, namely any character that is not matched by the
expression obtained by removing the first ‘!’ from it.

• A ‘/’ in a pathname cannot be matched by a ‘?’ or ‘*’ wildcard, or by a range like “[.-0]”.

Note that wildcard patterns are not regular expressions, although they are a bit similar.

For more information on Glob pattern matching refer these resources:

• Linux Manual

• Wildcard Match Documentation.

You can also import these Python Libraries to practice UNIX style pattern matching:

• fnmatch for File Name matching

3.1. Command Line Interface Reference 99

http://man7.org/linux/man-pages/man7/glob.7.html
http://man7.org/linux/man-pages/man7/glob.7.html
https://facelessuser.github.io/wcmatch/glob/
https://docs.python.org/2/library/fnmatch.html

ScanCode-Toolkit

• glob for File Path matching

What is a Facet?

A facet is essentially a file purpose classification label. It is defined as follows (by ClearlyDefined):

A facet of a component is a subset of the files related to the component. It’s really just a grouping that helps
us understand the shape of the project. Each facet is described by a set of glob expressions, essentially
wildcard patterns that are matched against file names.

Each facet definition can have zero or more glob expressions. A file can be captured by more than one
facet. Any file found but not captured by a defined facet is automatically assigned to the core facet.

• core - The files that go into making the release of the component. Note that the core facet is not
explicitly defined. Rather, it is made up of whatever is not in any other facet. So, by default, all files
are in the core facet unless otherwise specified.

• data - The files included in any data distribution of the component.

• dev - Files primarily used at development time (e.g., build utilities) and not distributed with the
component

• docs - Documentation files. Docs may be included with the executable component or separately or
not at all.

• examples – Like docs, examples may be included in the main component release or separately.

• tests – Test files may include code, data and other artifacts.

Important Links:

• Facets

• ClearlyDefined

3.1.11 Post-Scan Options

Post-Scan options activate their respective post-scan plugins which execute the task.

All “Post-Scan” Options

--mark-source Set the “is_source” flag to true for directories that contain over 90% of source files
as direct children and descendants. Count the number of source files in a directory
as a new “source_file_counts” attribute

Sub-Option of: --url

--consolidate Group resources by Packages or license and copyright holder and return those
groupings as a list of consolidated packages and a list of consolidated components.
The –consolidate option will be deprecated in a future version of scancode-toolkit
as top level packages now provide improved consolidated data.

Sub-Option of: --copyright, --license and --packages.

--filter-clues Filter redundant duplicated clues already contained in detected licenses, copyright
texts and notices.

3.1. Command Line Interface Reference 100

https://docs.python.org/2/library/glob.html#module-glob
https://github.com/clearlydefined/clearlydefined/blob/master/docs/clearly.md
https://clearlydefined.io/about

ScanCode-Toolkit

--license-clarity-score Compute a summary license clarity score at the codebase level.

Sub-Option of: --classify.

--license-policy FILE Load a License Policy file and apply it to the scan at the Resource level.

--summary Summarize scans by providing declared origin information and other detected info
at the codebase attribute level.

--tallies Summarize license, copyright and other scans at the codebase level with occur-
rence counts.

Sub-Options:

• --tallies-by-facet

• --tallies-key-files

• --tallies-with-details

--tallies-by-facet Summarize license, copyright and other scans and group the results by facet.

Sub-Option of: --tallies and --facet.

--tallies-key-files Summarize license, copyright and other scans for key, top-level files, with occur-
rence counts. Key files are top-level codebase files such as COPYING, README
and package manifests as reported by the --classify option: “is_legal”,
“is_readme”, “is_manifest” and “is_top_level” flags.

Sub-Option of: --classify and --summary.

--tallies-with-details Summarize license, copyright and other scans at the codebase level with occur-
rence counts, while also keeping intermediate details at the file and directory level.

To see all plugins available via command line help, use --plugins.

Note: Plugins that are shown by using --plugins inlcude the following:

1. Post-Scan Plugins (and, the following)

2. Pre-Scan Plugins

3. Output Options

4. Output Control

5. Basic Scan Options

--mark-source Option

Dependency
The option --mark-source is a sub-option of and requires the option --info.

The mark-source option marks the is_source attribute of a directory to be True, if more than 90% of
the files under that directory is source files, and False otherwise.

When the following command is executed to scan the samples directory with this option enabled:

3.1. Command Line Interface Reference 101

ScanCode-Toolkit

scancode -clpieu --json-pp output.json samples --mark-source

Then, the following directories are marked as “Source”, i.e. their is_source attribute is set to True, as
they contain mostly source code.

• samples/JGroups/src

• samples/zlib/iostream2

• samples/zlib/gcc_gvmat64

• samples/zlib/ada

• samples/zlib/infback9

--consolidate Option

Dependency
The option --consolidate is a sub-option of and requires the options --license , --copyright and
--package.

Note: The --consolidate option will be deprecated in a future version of ScanCode Toolkit as top level
packages, dependencies and licenses now provide improved consolidated data.

The JSON file containing scan results after using the --consolidate Plugin is structured as follows:

An example Scan:

scancode -clpieu --json-pp output.json samples --consolidate

The JSON output file is structured as follows:

{
"headers": [...],
"consolidated_components": [
{

"type": "license-holders",
"identifier": "dmitriy_anisimkov_1",
"consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-

→˓exception",
"consolidated_holders": [
"Dmitriy Anisimkov"

],
"consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
"core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
"core_holders": [
"Dmitriy Anisimkov"

],
"other_license_expression": null,
"other_holders": [],

(continues on next page)

3.1. Command Line Interface Reference 102

ScanCode-Toolkit

(continued from previous page)

"files_count": 1
},
{...
}

],
"consolidated_packages": [...],
"files": [...]

}

Each consolidated component has the following information:

"consolidated_components": [
{
"type": "license-holders",
"identifier": "dmitriy_anisimkov_1",
"consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
"consolidated_holders": [
"Dmitriy Anisimkov"

],
"consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
"core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
"core_holders": [
"Dmitriy Anisimkov"

],
"other_license_expression": null,
"other_holders": [],
"files_count": 1

},

In addition to this, in every file/directory where the consolidated part (i.e. License information) was
present, a “consolidated_to” attribute is added pointing to the “identifier” of “consolidated_components”:

"consolidated_to": [
"dmitriy_anisimkov_1"

],

Note that multiple files may have the same “consolidated_to” attribute.

--filter-clues Option

The --filter-clues Plugin filters redundant duplicated clues already contained in detected licenses,
copyright texts and notices, authors.

Consider the output of running the following scan (compared to running the scan without the
--filter-clues option):

./scancode -clpieu --json-pp sample_filter_clues.json samples --filter-clues

When we run without the --filter-clues option, we have the following detections at "path":
"samples/JGroups/src/FixedMembershipToken.java":

3.1. Command Line Interface Reference 103

ScanCode-Toolkit

{
"authors": [
{

"author": "Chris Mills (millsy@jboss.com)",
"start_line": 51,
"end_line": 51

}
],
"emails": [
{
"email": "millsy@jboss.com",
"start_line": 51,
"end_line": 51

}
]

}

And when we run a scan with the --filter-clues option:

{
"authors": [
{

"author": "Chris Mills (millsy@jboss.com)",
"start_line": 51,
"end_line": 51

}
],
"emails": []

}

Notice that when we run the scan with the --filter-clues option, we do not have the millsy@jboss.com
in email detections as we already have it in author detections.

--license-clarity-score Option

Dependency
The option --license-clarity-score is a sub-option of and requires the option --classify.

Keep this doc section in sync with docstrings at: src/summarycode/score.
py::compute_license_score

The --license-clarity-score plugin when used in a scan, computes a summary license clarity score
at the codebase level. The license clarity score is a value from 0-100 calculated by combining the weighted
values determined for each of the scoring elements:

Declared license:
• When true, indicates that the software package licensing is documented at top-level or well-

known locations in the software project, typically in a package manifest, NOTICE, LICENSE,
COPYING or README file.

3.1. Command Line Interface Reference 104

ScanCode-Toolkit

• Scoring Weight = 40

Identification precision:
• Indicates how well the license statement(s) of the software identify known licenses that can be

designated by precise keys (identifiers) as provided in a publicly available license list, such as
the ScanCode LicenseDB, the SPDX license list, the OSI license list, or a URL pointing to a
specific license text in a project or organization website.

• Scoring Weight = 40

License texts:
• License texts are provided to support the declared license expression in files such as a package

manifest, NOTICE, LICENSE, COPYING or README.

• Scoring Weight = 10

Declared copyright:
• When true, indicates that the software package copyright is documented at top-level or well-

known locations in the software project, typically in a package manifest, NOTICE, LICENSE,
COPYING or README file.

• Scoring Weight = 10

Ambiguous compound licensing
• When true, indicates that the software has a license declaration that makes it difficult to construct

a reliable license expression, such as in the case of multiple licenses where the conjunctive versus
disjunctive relationship is not well defined.

• Scoring Weight = -10

Conflicting license categories
• When true, indicates the declared license expression of the software is in the permissive category,

but that other potentially conflicting categories, such as copyleft and proprietary, have been
detected in lower level code.

• Scoring Weight = -20

An example Scan:

scancode -clpieu --json-pp output.json samples --classify --license-clarity-
→˓score

The “license_clarity_score” will have the following attributes:

• “score”
• “declared_license”
• “identification_precision

• “has_license_text”
• “declared_copyrights”
• “conflict-

ing_license_categories”
• “ambigu-

ous_compound_licensing”

When the “license_clarity_score” is included, the entire JSON file is structured as follows:

{
"headers": [...],
"summary": {
"declared_license_expression": "mit",
"license_clarity_score": {

"score": 100,
(continues on next page)

3.1. Command Line Interface Reference 105

ScanCode-Toolkit

(continued from previous page)

"declared_license": true,
"identification_precision": true,
"has_license_text": true,
"declared_copyrights": true,
"conflicting_license_categories": false,
"ambiguous_compound_licensing": false

}
},
"files": [...]

}

Note: When the --license-clarity-score option is used, the output is added as the following at-
tributes:

• declared_license_expression

• license_clarity_score (with the score and other flags as sub-attributes)

in the top-level summary attribute, but the --summary CLI option is not required for this. Using the
--summary CLI option also populates the same top-level summary attribute with the license clarity score.

--license-policy FILE Option

Note: The --license-policy option does not have any required CLI options, but you would not have
any usable information if you are using it without the --license option since this only gets license keys
from the file license detections. We do not have licenses as a required option because this plugin would be
upgraded to also include the license policy attribute for packages too.

The Policy file is a YAML (.yml) document with the following structure:

license_policies:
- license_key: mit

label: Approved License
color_code: '#00800'
icon: icon-ok-circle

- license_key: agpl-3.0
label: Approved License
color_code: '#008000'
icon: icon-ok-circle

Note: In the policy file only the “license_key” is a required field.

Applying License Policies during a ScanCode scan, using the --license-policy Plugin:

scancode -clipeu --json-pp output.json samples --license-policy policy-file.yml

This adds to every file/directory an object “license_policy”, having as further attributes under it the fields
as specified in the .YAML file. Here according to our example .YAML file, the attributes will be:

3.1. Command Line Interface Reference 106

ScanCode-Toolkit

• “license_key” • “label” • “color_code” • “icon”

Here the samples directory is scanned, and the Scan Results for a sample file is as follows:

{
"path": "samples/JGroups/licenses/apache-2.0.txt",
"license_detections": [
"license_expression": "apache-2.0",
"matches": {...}
"identifier": "apache_2_0-9804422e-94ac-ad40-b53a-ee6f8ddb7a3b"

],
"detected_license_expression": "apache-2.0",
"detected_license_expression_spdx": "Apache-2.0",
"license_policy": {
"license_key": "apache-2.0",
"label": "Approved License",
"color_code": "#008000",
"icon": "icon-ok-circle"

},
...

},

More information on the License Policy Plugin and usage.

--license-references Option

Dependency
The option --license-references is a sub-option of and requires the option --license.

Details about the matched license or license rule are not included with the license matches for license
detections by default. These are instead reported optionally and separately as codebase-level reference
data. There are two codebase-level attributes added with the --license-references option:

• license_references with details from scancode licenses (which are each a .LICENSE file)

• license_rule_references with details from scancode license rules (which are each a .RULE file)

Consider a file mit.txt with the following license declaration:

License: mit

We run the following scan on this file:

scancode -l --license-text --license-references mit.txt --json-pp mit.json

See the results for this license scan with --license-references enabled:

{
"headers": [...],
"license_detections": [

(continues on next page)

3.1. Command Line Interface Reference 107

ScanCode-Toolkit

(continued from previous page)

{
"identifier": "mit-3fce6ea2-8abd-6c6b-3ede-a37af7c6efee",
"license_expression": "mit",
"detection_count": 1

}
],
"license_references": [
{
"key": "mit",
"language": "en",
"short_name": "MIT License",
"name": "MIT License",
"category": "Permissive",
"owner": "MIT",
"homepage_url": "http://opensource.org/licenses/mit-license.php",
"notes": "Per SPDX.org, this license is OSI certified.",
"is_builtin": true,
"is_exception": false,
"is_unknown": false,
"is_generic": false,
"spdx_license_key": "MIT",
"other_spdx_license_keys": [],
"osi_license_key": null,
"text_urls": [
"http://opensource.org/licenses/mit-license.php"

],
"osi_url": "http://www.opensource.org/licenses/MIT",
"faq_url": "https://ieeexplore.ieee.org/document/9263265",
"other_urls": [
"https://opensource.com/article/18/3/patent-grant-mit-license",
"https://opensource.com/article/19/4/history-mit-license",
"https://opensource.org/licenses/MIT"

],
"key_aliases": [],
"minimum_coverage": 0,
"standard_notice": null,
"ignorable_copyrights": [],
"ignorable_holders": [],
"ignorable_authors": [],
"ignorable_urls": [],
"ignorable_emails": [],
"text": "Permission is hereby granted, free of charge, to any person␣

→˓obtaining\na copy of this software and associated documentation files (the\n\
→˓"Software\"), to deal in the Software without restriction, including\
→˓nwithout limitation the rights to use, copy, modify, merge, publish,\
→˓ndistribute, sublicense, and/or sell copies of the Software, and to\npermit␣
→˓persons to whom the Software is furnished to do so, subject to\nthe␣
→˓following conditions:\n\nThe above copyright notice and this permission␣
→˓notice shall be\nincluded in all copies or substantial portions of the␣
→˓Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY␣
→˓KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\
→˓nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN␣

(continues on next page)

3.1. Command Line Interface Reference 108

ScanCode-Toolkit

(continued from previous page)

→˓NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM,␣
→˓DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR␣
→˓OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE␣
→˓USE OR OTHER DEALINGS IN THE SOFTWARE.",

"scancode_url": "https://github.com/nexB/scancode-toolkit/tree/develop/
→˓src/licensedcode/data/licenses/mit.LICENSE",

"licensedb_url": "https://scancode-licensedb.aboutcode.org/mit",
"spdx_url": "https://spdx.org/licenses/MIT"

}
],
"license_rule_references": [
{
"license_expression": "mit",
"identifier": "mit_30.RULE",
"language": "en",
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/mit_30.RULE",
"is_license_text": false,
"is_license_notice": false,
"is_license_reference": false,
"is_license_tag": true,
"is_license_intro": false,
"is_continuous": false,
"is_builtin": true,
"is_from_license": false,
"is_synthetic": false,
"length": 2,
"relevance": 100,
"minimum_coverage": 100,
"referenced_filenames": [],
"notes": null,
"ignorable_copyrights": [],
"ignorable_holders": [],
"ignorable_authors": [],
"ignorable_urls": [],
"ignorable_emails": [],
"text": "License: MIT"

}
],
"files": [
{
"path": "mit.txt",
"type": "file",
"detected_license_expression": "mit",
"detected_license_expression_spdx": "MIT",
"license_detections": [
{
"license_expression": "mit",
"matches": [
{
"score": 100.0,
"start_line": 1,

(continues on next page)

3.1. Command Line Interface Reference 109

ScanCode-Toolkit

(continued from previous page)

"end_line": 1,
"matched_length": 2,
"match_coverage": 100.0,
"matcher": "1-hash",
"license_expression": "mit",
"rule_identifier": "mit_30.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/

→˓develop/src/licensedcode/data/rules/mit_30.RULE",
"matched_text": "License: mit"

}
],
"identifier": "mit-3fce6ea2-8abd-6c6b-3ede-a37af7c6efee"

}
],
"license_clues": [],
"percentage_of_license_text": 100.0,
"scan_errors": []

}
]

}

See Only reference License related data for more details on license references and a comparison with
previous scancode output formats.

--summary Option

Sub-Option
The option --summary-by-facet, --summary-key-files and --summary-with-details``are
sub-options of ``--summary. These Sub-Options are all Post-Scan Options.

An example Scan:

scancode -clpieu --json-pp output.json samples --summary

The whole JSON file is structured as follows, when the --summary plugin is applied:

{
"headers": [...],
"summary": {
"declared_license_expression": null,
"license_clarity_score": {...},
"declared_holder": "",
"primary_language": "C",
"other_license_expressions": [...],
"other_holders": [...]
"other_languages": [...]

},
(continues on next page)

3.1. Command Line Interface Reference 110

ScanCode-Toolkit

(continued from previous page)

"files": [...]
}

Each attribute in other_license_expressions, other_holders, other_languages has multiple en-
tries each containing “value” and “count”, with their values having the summary information inside them.

See below a sample fully populated summary object:

{
"summary": {
"declared_license_expression": "commercial-license AND other-permissive AND␣

→˓mit",
"license_clarity_score": {
"score": 100,
"declared_license": true,
"identification_precision": true,
"has_license_text": true,
"declared_copyrights": true,
"conflicting_license_categories": false,
"ambiguous_compound_licensing": false

},
"declared_holder": "Strapi Solutions SAS",
"primary_language": "JavaScript",
"other_license_expressions": [
{
"value": "commercial-license AND other-permissive AND mit",
"count": 65

},
{
"value": "mit",
"count": 7

},
{
"value": null,
"count": 1

},
{
"value": "apache-2.0",
"count": 1

},
{
"value": "generic-cla",
"count": 1

}
],
"other_holders": [
{
"value": null,
"count": 3572

},
{
"value": "Jon Schlinkert",
"count": 2

(continues on next page)

3.1. Command Line Interface Reference 111

ScanCode-Toolkit

(continued from previous page)

}
],
"other_languages": [
{
"value": "TypeScript",
"count": 91

},
{
"value": "GAS",
"count": 28

},
{
"value": "HTML",
"count": 6

},
{
"value": "Bash",
"count": 5

},
{
"value": "verilog",
"count": 1

}
]

}

--tallies Option

Optional Dependency
The --tallies option does not have any required CLI option dependencies, but as it contains license,
copyright, holder, author, packages and programming language information, it is recommended to use this
option with --license, --package, --copyright and --info options enabled, or there will not be any
corresponding data for these.

An example scan using the --tallies Plugin:

scancode -clipeu --json-pp strapi.json strapi-main/ --tallies

The JSON file containing the --tallies scan results are as follows:

{
"headers": [...],
"packages": [...],
"dependencies": [...],
"license_detections": [...],
"tallies": {
"detected_license_expression": [

{
(continues on next page)

3.1. Command Line Interface Reference 112

ScanCode-Toolkit

(continued from previous page)

"value": "commercial-license AND other-permissive AND mit",
"count": 65

},
{
"value": "mit",
"count": 7

},
{
"value": null,
"count": 1

},
{
"value": "apache-2.0",
"count": 1

},
{
"value": "generic-cla",
"count": 1

}
],
"copyrights": [
{
"value": null,
"count": 3572

},
{
"value": "Copyright (c) Strapi Solutions SAS",
"count": 31

},
{
"value": "Copyright (c) Jon Schlinkert",
"count": 2

}
],
"holders": [
{
"value": null,
"count": 3572

},
{
"value": "Strapi Solutions SAS",
"count": 31

},
{
"value": "Jon Schlinkert",
"count": 2

}
],
"authors": [
{
"value": null,
"count": 3567

(continues on next page)

3.1. Command Line Interface Reference 113

ScanCode-Toolkit

(continued from previous page)

},
{
"value": "name' Strapi Solutions",
"count": 30

},
{
"value": "the community",
"count": 4

},
{
"value": "name' A Strapi developer",
"count": 3

},
{
"value": "name A Strapi",
"count": 1

},
{
"value": "name' Yurii Tykhomyrov",
"count": 1

}
],
"programming_language": [
{
"value": "JavaScript",
"count": 2854

},
{
"value": "TypeScript",
"count": 91

},
{
"value": "GAS",
"count": 28

},
{
"value": "HTML",
"count": 6

},
{
"value": "Bash",
"count": 5

},
{
"value": "verilog",
"count": 1

}
],
"packages": [...]

},
"files": [...]

}

3.1. Command Line Interface Reference 114

ScanCode-Toolkit

This adds a top-level “tallius” attribute and the sub-attributes will be:

• “de-
tected_license_expression”

• “copy-
rights”

• “holders”
• “authors”

• “pro-
gram-

ming_language”
• “pack-

ages”

These are all lists with the corresponding “value” and their respective “count”, basically tallies of all
different values.

--tallies-by-facet Option

Dependency
The option --tallies-by-facet is a sub-option of and requires the options --facet and --tallies.

For users who want to know What is a Facet?.

Running the scan with --tallies --tallies-by-facet Plugins creates individual summaries for all
the facets with the same license, copyright and other scan information, at a codebase level (in addition to
the codebase level general summary generated by --tallies Plugin). Once all files have been assigned
a facet, files without a facet are assigned to the core facet.

An example scan using the --tallies-by-facet Plugin:

scancode -clipeu --json-pp strapi.json strapi-main/ --tallies --facet dev="*.js
→˓" --facet dev="*.ts" --tallies-by-facet

We have used the github:strapi/strapi project to generate exmaple results for this CLI option.

Note: All other files which are not dev are marked to be included in the facet core.

A sample “summary_by_facet” object generated by the previous scan (shortened):

{
"headers": [...],
"packages": [...],
"dependencies": [...],
"license_detections": [...],
"tallies": {...}
"tallies_by_facet": [
{

"facet": "core",
"tallies": {
"detected_license_expression": [
{
"value": "commercial-license AND other-permissive AND mit",
"count": 65

},
{
"value": "mit",
"count": 5

(continues on next page)

3.1. Command Line Interface Reference 115

https://github.com/strapi/strapi

ScanCode-Toolkit

(continued from previous page)

},
{
"value": "generic-cla",
"count": 1

}
],
"copyrights": [
{
"value": "Copyright (c) Strapi Solutions SAS",
"count": 31

}
],
"holders": [
{
"value": "Strapi Solutions SAS",
"count": 31

}
],
"authors": [
{
"value": "name' Strapi Solutions",
"count": 30

},
{
"value": "name' A Strapi developer",
"count": 3

},
{
"value": "name' Yurii Tykhomyrov",
"count": 1

},
{
"value": "the community",
"count": 1

}
],
"programming_language": [
{
"value": "GAS",
"count": 28

},
{
"value": "TypeScript",
"count": 7

},
{
"value": "HTML",
"count": 6

},
{
"value": "Bash",
"count": 5

(continues on next page)

3.1. Command Line Interface Reference 116

ScanCode-Toolkit

(continued from previous page)

},
{
"value": "verilog",
"count": 1

}
]

}
},
{
"facet": "dev",
"tallies": {
"detected_license_expression": [
{
"value": "mit",
"count": 2

},
{
"value": "apache-2.0",
"count": 1

}
],
"copyrights": [
{
"value": "Copyright (c) Jon Schlinkert",
"count": 2

}
],
"holders": [
{
"value": "Jon Schlinkert",
"count": 2

}
],
"authors": [
{
"value": "the community",
"count": 3

},
{
"value": "name A Strapi",
"count": 1

}
],
"programming_language": [
{
"value": "JavaScript",
"count": 2854

},
{
"value": "TypeScript",
"count": 84

}

(continues on next page)

3.1. Command Line Interface Reference 117

ScanCode-Toolkit

(continued from previous page)

]
}

},
{
"facet": "tests",
"tallies": {
"detected_license_expression": [],
"copyrights": [],
"holders": [],
"authors": [],
"programming_language": []

}
},
{
"facet": "docs",
"tallies": {
"detected_license_expression": [],
"copyrights": [],
"holders": [],
"authors": [],
"programming_language": []

}
},
{
"facet": "data",
"tallies": {
"detected_license_expression": [],
"copyrights": [],
"holders": [],
"authors": [],
"programming_language": []

}
},
{
"facet": "examples",
"tallies": {
"detected_license_expression": [],
"copyrights": [],
"holders": [],
"authors": [],
"programming_language": []

}
}

],
"files": [...]

}

Note: Summaries for all the facets are generated by default, regardless of facets not having any files under
them.

3.1. Command Line Interface Reference 118

ScanCode-Toolkit

--tallies-key-files Option

Dependency
The option --tallies-key-files is a sub-option of and requires the options --classify and
--tallies.

An example Scan:

scancode -clipeu --json-pp strapi.json strapi-main/ --classify --tallies --
→˓tallies-key-files

Running the scan with --tallies --tallies-key-files plugins creates summaries for key files with
the same license, copyright and other scan information, at a codebase level (in addition to the codebase
level general summary generated by --tallies Plugin).

The resulting JSON file containing the scan results is structured as follows:

{
"headers": [...],
"packages": [...],
"dependencies": [...],
"license_detections": [...],
"tallies": {...},
"tallies_of_key_files": {
"license_expressions": [

{
"value": null,
"count": 1

}
],
"copyrights": [
{
"value": null,
"count": 1

}
],
"holders": [
{
"value": null,
"count": 1

}
],
"authors": [
{
"value": null,
"count": 1

}
],
"programming_language": [
{
"value": null,
"count": 1

(continues on next page)

3.1. Command Line Interface Reference 119

ScanCode-Toolkit

(continued from previous page)

}
]

},
"files": [...]

}

These following flags for each file/directory is also present (generated by --classify)

• “is_legal”
• “is_manifest”

• “is_readme”
• “is_top_level”

• “is_key_file”

A key-file is a top-level file, that is either a legal (LICENSE/COPYING etc), manifest or a readme file.

--tallies-with-details Option

The --tallies plugin summarizes license, copyright and other scan information at the codebase level.
Now running the scan with the --tallies-with-details plugin instead creates summaries at individual
file/directories with the same license, copyright and other scan information, but at a file/directory level (in
addition to the the codebase level summary).

An example Scan:

scancode -clipeu --json-pp strapi.json strapi-main/ --tallies-with-details

Note: The option --tallies-with-details is not a dependency of --tallies and can be used
individually. --tallies is redundant in a scan when --tallies-with-details is already selected,
because both of them add codebase-level tallies.

A sample scan result is structured as follows:

{
"headers": [...],
"packages": [...],
"dependencies": [...],
"license_detections": [...],
"tallies": {...},
"files": [
{

"path": "strapi-main",
"type": "directory",
"name": "strapi-main",
"base_name": "strapi-main",
"extension": "",
"size": 0,
"date": null,
"sha1": null,
"md5": null,
"sha256": null,

(continues on next page)

3.1. Command Line Interface Reference 120

ScanCode-Toolkit

(continued from previous page)

"mime_type": null,
"file_type": null,
"programming_language": null,
"is_binary": false,
"is_text": false,
"is_archive": false,
"is_media": false,
"is_source": false,
"is_script": false,
"package_data": [],
"for_packages": [],
"detected_license_expression": null,
"detected_license_expression_spdx": null,
"license_detections": [],
"license_clues": [],
"percentage_of_license_text": 0,
"copyrights": [],
"holders": [],
"authors": [],
"emails": [],
"urls": [],
"facets": [],
"is_legal": false,
"is_manifest": false,
"is_readme": false,
"is_top_level": true,
"is_key_file": false,
"tallies": {
"detected_license_expression": [
{
"value": "commercial-license AND other-permissive AND mit",
"count": 65

},
{
"value": "mit",
"count": 7

},
{
"value": null,
"count": 1

},
{
"value": "apache-2.0",
"count": 1

},
{
"value": "generic-cla",
"count": 1

}
],
"copyrights": [
{

(continues on next page)

3.1. Command Line Interface Reference 121

ScanCode-Toolkit

(continued from previous page)

"value": null,
"count": 3572

},
{
"value": "Copyright (c) Strapi Solutions SAS",
"count": 31

},
{
"value": "Copyright (c) Jon Schlinkert",
"count": 2

}
],
"holders": [
{
"value": null,
"count": 3572

},
{
"value": "Strapi Solutions SAS",
"count": 31

},
{
"value": "Jon Schlinkert",
"count": 2

}
],
"authors": [
{
"value": null,
"count": 3567

},
{
"value": "name' Strapi Solutions",
"count": 30

},
{
"value": "the community",
"count": 4

},
{
"value": "name' A Strapi developer",
"count": 3

},
{
"value": "name A Strapi",
"count": 1

},
{
"value": "name' Yurii Tykhomyrov",
"count": 1

}
],

(continues on next page)

3.1. Command Line Interface Reference 122

ScanCode-Toolkit

(continued from previous page)

"programming_language": [
{
"value": "JavaScript",
"count": 2854

},
{
"value": "TypeScript",
"count": 91

},
{
"value": "GAS",
"count": 28

},
{
"value": "HTML",
"count": 6

},
{
"value": "Bash",
"count": 5

},
{
"value": "verilog",
"count": 1

}
]

},
"files_count": 3604,
"dirs_count": 1603,
"size_count": 15175739,
"scan_errors": []

},
{...}

]
}

3.1. Command Line Interface Reference 123

CHAPTER

FOUR

TUTORIALS

Tutorial documents provide specific instructions to help you get started.

4.1 Basic Tutorials

4.1.1 How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed by default with Scancode.

Prerequisites

Refer to the Comprehensive Installation installation guide.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed by default with
Scancode Toolkit. Here’s the directory structure and respective files:

124

ScanCode-Toolkit

We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the archive before running
the scan, to also scan the files inside this package.

4.1. Basic Tutorials 125

ScanCode-Toolkit

Performing Extraction

To extract the packages inside samples directory:

extractcode samples

This extracts the zlib.tar.gz package:

Note: Use the --shallow option to prevent recursive extraction of nested archives.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan, according to your
requirements.

1. The basic scan options, i.e. -c or --copyright, -l or --license, -p or --package, -e or --email, -u or
--url, and -i or --info cane be selected according to your requirements. If you do not need one specific type
of information (say, licenses), consider removing it because the more options you scan for, the longer it will take
for the scan to complete.

2. --license-score INTEGER is to be set if license matching accuracy is desired (Default is 0, and increasing
this means a more accurate match). Also, using --license-text includes the matched text to the result.

3. -n INTEGER option can be used to speed up the scan using multiple parallel processes.

4. --timeout FLOAT option can be used to skip files taking a long time to scan.

5. --ignore <pattern> can be used to skip certain group of files.

6. <OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output for specific
tasks/have requirements. Here we are using json as ScanCode Workbench imports json files only.

For the complete list of options, refer All Available Options.

4.1. Basic Tutorials 126

ScanCode-Toolkit

Running The Scan

Now, run the scan with the options decided:

scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
scan_start: 2019-09-24T203514.573671
scan_end: 2019-09-24T203545.649805
setup_scan:licenses: 4.30s
setup: 4.30s
scan: 26.62s
total: 31.14s

Removing temporary files...done.

Other Important Documentation

1. Type of Options

2. How to Run a Scan

3. Basic Tutorials

4. How-To Guides

5. Reference Docs

6. Contributing to Code Development

7. Contributing to the Documentation

8. Plugin Architecture

9. FAQ

10. Support

4.1. Basic Tutorials 127

ScanCode-Toolkit

4.1.2 How to Visualize Scan results

To help visualize the scans, we have a dedicated tool Scancode workbench which is a desktop application that allows
you to visualize and explore the results of one or more scans. It is a cross-platform application that runs on Windows,
Mac OS X and Linux. It is built using the Electron framework and is built using Electron, Typescript & React

Detailed Installation and Usage guide can be found here - Getting Started

Warning: This tutorial uses the 32.x version of Scancode Toolkit, and Scancode Workbench 4.0.x (This version
of ScanCode Workbench is compatible with scans from any ScanCode Toolkit develop version/branch at or after
v32.x). If you are using an older version of Scancode Toolkit, check respective versions of this documentation.
Also refer the Scancode Workbench release highlights.

4.1.3 How To Extract Archives

ScanCode Toolkit provides archive extraction. This command can be used before running a scan over a codebase
in order to ensure all archives are extracted. Archives found inside an extracted archive are extracted recursively.
Extraction is done in-place in a directory and named after the archive with '-extract' appended.

Usage:

extractcode [OPTIONS] <input>

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found in an extracted archive
are extracted recursively by default. Extraction is done in-place in a directory named ‘-extract’ side-by-side with an
archive.

To extract the packages in the samples directory

extractcode samples

This extracts the zlib.tar.gz package:

4.1. Basic Tutorials 128

https://github.com/nexb/scancode-workbench/
https://scancode-workbench.readthedocs.io/en/develop/getting-started/index.html#getting-started
https://github.com/nexB/scancode-workbench/releases/

ScanCode-Toolkit

--shallow Do not extract recursively nested archives (e.g. Not archives in archives).

--verbose Print verbose file-by-file progress messages.

--quiet Do not print any summary or progress message.

-h, --help Show the extractcode help message and exit.

--about Show information about ScanCode and licensing and exit.

--version Show the version and exit.

4.1.4 How to specify Scancode Output Format

A basic overview of formatting Scancode Output is presented here.

More information on Scancode Output Formats.

JSON

If you want JSON output of ScanCode results, you can pass the --json argument to ScanCode. The following com-
mands will output scan results in a formatted json file:

• scancode --json /path/to/output.json /path/to/target/dir

• scancode --json-pp /path/to/output.json /path/to/target/dir

• scancode --json-lines /path/to/output.json /path/to/target/dir

To compare the JSON output in different formats refer Comparing Different json Output Formats.

4.1. Basic Tutorials 129

ScanCode-Toolkit

Print to stdout (Terminal)

If you want to format the output in JSON and print it at stdout, you can replace the JSON filename with a “-”, like
--json-pp - instead of --json-pp output.json.

The following command will output the scan results in JSON format to stdout (In the Terminal):

./scancode -clpieu --json-pp - samples/

HTML

If you want HTML output of ScanCode results, you can pass the --html argument to ScanCode. The following
commands will output scan results in a formatted HTML page or simple web application:

• scancode --html /path/to/output.html /path/to/target/dir

• scancode --html-app /path/to/output.html /path/to/target/dir

For more details on the HTML output format refer --html FILE.

Warning: The --html-app option has been deprecated, use Scancode Workbench instead.

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to create their own output
template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path to the custom
template to the --custom-template argument, or drop it in a folder to src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the particular data I wish to see.
In this case, I am only interested in the license and copyright data for this particular scan.

template.txt:
[

{% if files.license_copyright %}
{% for location, data in files.license_copyright.items() %}

{% for row in data %}
location:"{{ location }}",
{% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}

{% endfor %}
{% endfor %}

{% endif %}
]

.. note::

File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

4.1. Basic Tutorials 130

ScanCode-Toolkit

$ scancode -clpeui --custom-output output.txt --custom-template template.txt samples
Scanning files...
[####################################] 46

Scanning done.

Now the results are saved in output.txt and we can easily view them with head output.txt:

[
location:"samples/JGroups/LICENSE",
copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

location:"samples/JGroups/LICENSE",
copyright:"copyrighted by the Free Software Foundation",

]

For a more elaborate template, refer this default template given with Scancode, to generate HTML output with the
--html output format option.

Documentation on Jinja templates.

4.1.5 How to set what will be detected in Scan

ScanCode allows you to scan a codebase for license, copyright and other interesting information that can be discovered
in files. The following options are available for detection when using ScanCode Toolkit:

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions, documenting a program’s options. For
example:

-c, --copyright Scan <input> for copyrights.

Sub-Options:

• --consolidate

-l, --license Scan <input> for licenses.

Sub-Options:

• --license-references

• --license-text

• --license-text-diagnostics

• --license-diagnostics

• --license-url-template TEXT

• --license-score INT

• --license-clarity-score

• --consolidate

• --unknown-licenses

-p, --package Scan <input> for packages.

Sub-Options:

4.1. Basic Tutorials 131

https://github.com/nexB/scancode-toolkit/blob/develop/src/formattedcode/templates/html/template.html
https://jinja.palletsprojects.com/en/2.10.x/

ScanCode-Toolkit

• --consolidate

--system-package Scan <input> for installed system package databases.

--package-only Scan <input> for system and application only for package metadata, without li-
cense/ copyright detection and package assembly.

-e, --email Scan <input> for emails.

Sub-Options:

• --max-email INT

-u, --url Scan <input> for urls.

Sub-Options:

• --max-url INT

-i, --info Scan for and include information such as:

• Size,

• Type,

• Date,

• Programming language,

• sha1 and md5 hashes,

• binary/text/archive/media/source/script flags

• Additional options through more CLI options

Sub-Options:

• --mark-source

Note: Unlike previous 2.x versions, -c, -l, and -p are not default. If any combination of these options are used,
ScanCode performs only that specific task, and not the others. scancode -l scans only for licenses, and doesn’t
scan for copyright/packages/general information/emails/urls. The only notable exception: a --package scan also has
license information for package manifests and top-level packages, which are derived regardless of --license option
being used.

Note: These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of scancode -c -i -p, you
can write scancode -cip and it will be the same.

--generated Classify automatically generated code files with a flag.

--max-email INT Report only up to INT emails found in a file. Use 0 for no limit. [Default: 50]

Sub-Option of: --email

--max-url INT Report only up to INT urls found in a file. Use 0 for no limit. [Default: 50]

Sub-Option of: --url

--license-score INTEGER Do not return license matches with scores lower than this score. A number
between 0 and 100. [Default: 0] Here, a bigger number means a better match,
i.e. Setting a higher license score translates to a higher threshold (with equal or
smaller number of matches).

4.1. Basic Tutorials 132

ScanCode-Toolkit

Sub-Option of: --license

--license-text Include the matched text for the detected licenses in the output report.

Sub-Option of: --license

Sub-Options:

• --license-text-diagnostics

--license-url-template TEXT Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key. [Default:
default: https://scancode-licensedb.aboutcode.org/{}]

Sub-Option of: --license

--license-text-diagnostics In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of: --license and --license-text

--license-diagnostics In license detections, include diagnostic details to figure out the license detection
post processing steps applied.

Sub-Option of: --license

--unknown-licenses [EXPERIMENTAL] Detect unknown licenses.

Sub-Option of: --license

Different Scans

The following examples will use the samples directory that is provided with the ScanCode Toolkit code. All examples
will be saved in the JSON format, which can be loaded into Scancode Workbench for visualization. See How to
Visualize Scan results for more information. Another output format option is a static html file. See Scancode Output
Formats for more information.

Scan for all clues:

To scan for licenses, copyrights, urls, emails, package information, and file information

scancode -clipeu --json output.json samples

Scan for license and copyright clues:

scancode -cl --json-pp output.json samples

4.1. Basic Tutorials 133

https://scancode-licensedb.aboutcode.org
https://github.com/nexB/scancode-toolkit/tree/develop/samples

ScanCode-Toolkit

Scan for emails and URLs:

scancode -eu --json-pp output.json samples

Scan for package information:

scancode -p --json-pp output.json samples

Scan for file information:

scancode -i --json-pp output.json samples

To see more example scans:

scancode --examples

For more information, refer All Available Options.

4.1.6 Add A Post-Scan Plugin

Scan plugins in scancode-toolkit

A lot of scancode features are built-in plugins which are present with scancode-toolkit source code and are usually
enabled via the different scancode-toolkit CLI options and are grouped by the types of plugins.

Here are the major types of plugins:

1. Pre-scan plugins (scancode_pre_scan in entry points)

These plugins are run before the main scanning steps and are usually filtering of input files, or file classification
steps, on whose results the main scan plugins depend on. The base plugin class to be extended is PreScanPlugin
at /src/plugincode/pre_scan.py.

2. Scan plugins (scancode_scan in entry points)

The are the scancode plugins which does the file scanning for useful information like license, copyrights, pack-
ages and others. These are run on multiprocessing for speed as they are done on a per-file basis, but there can
also be post-processing steps on these which are run afterwards and have access to all the per-file scan results.
The base plugin class to be extended is ScanPlugin at /src/plugincode/scan.py.

3. Post-scan plugins (scancode_post_scan in entry points)

These are mainly data processing, summerizing and reporting plugins which depend on all the results for
the scan plugins. These add new codebase level or file-level attributes, and even removes/modifies data as
required for consolidation or summarization. The base plugin class to be extended is PostScanPlugin at
/src/plugincode/post_scan.py.

4. Output plugins (scancode_output in entry points)

Supported output options in scancode-toolkit are all plugins and these can also be multiple output options se-
lected. These convert, process and writes the data in the specific file format as the output of the scanning proce-
dures. The base plugin class to be extended is OutputPlugin at /src/plugincode/output.py.

4.1. Basic Tutorials 134

https://github.com/nexB/plugincode/blob/main/src/plugincode/pre_scan.py
https://github.com/nexB/plugincode/blob/main/src/plugincode/scan.py
https://github.com/nexB/plugincode/blob/main/src/plugincode/post_scan.py
https://github.com/nexB/plugincode/blob/main/src/plugincode/output.py

ScanCode-Toolkit

5. Output Filter Plugins (scancode_output_filter in entry points)

There are also output filter plugins which apply filters to the outputs and is modified. These filters can be based
on whether resources had any detections, ignorables present in licenses and others. The base plugin class to be
extended is OutputFilterPlugin at /src/plugincode/output_filter.py.

6. Location Provider Plugins

These plugins provide pre-built binary libraries and utilities and their locations which are packaged to
be used in scancode-toolkit. The base plugin class to be extended is LocationProviderPlugin at
/src/plugincode/location_provider.py.

Built-In vs. Optional Installation

Built-In

Some post-scan plugins are installed when ScanCode itself is installed, and they are specified at [options.
entry_points] in the setup.cfg file. For example, the License Policy Plugin is a built-in plugin, whose code is
located here:

https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/plugin_license_
→˓policy.py

These plugins do not require any additional installation steps and can be used as soon as ScanCode is up and running.

Optional

ScanCode is also designed to use post-scan plugins that must be installed separately from the installation of ScanCode.
The code for this sort of plugin is located here:

https://github.com/nexB/scancode-plugins

This wiki page will focus on optional post-scan plugins.

Example Post-Scan Plugin: Hello ScanCode

To illustrate the creation of a simple post-scan plugin, we’ll create a hypothetical plugin named Hello ScanCode,
which will print Hello ScanCode! in your terminal after you’ve run a scan. Your command will look like something
like this:

scancode -i -n 2 <path to target codebase> --hello --json <path to JSON output file>

We’ll start by creating three folders:

1. Top-level folder – /scancode-hello/

2. 2nd-level folder – /src/

3. 3rd-level folder – /hello_scancode/

4.1. Basic Tutorials 135

https://github.com/nexB/plugincode/blob/main/src/plugincode/output_filter.py
https://github.com/nexB/plugincode/blob/main/src/plugincode/location_provider.py
https://github.com/nexB/scancode-toolkit/blob/develop/setup.cfg

ScanCode-Toolkit

1. Top-level folder – /scancode-hello/

• In the scancode-plugins repository, in the misc directory, add a folder with a relevant name, e.g.,
scancode-hello. This folder will hold all of your plugin code.

• Inside the /scancode-hello/ folder you’ll need to add a folder named src and 7 files. /src/ – This folder
will contain your primary Python code and is discussed in more detail in the following section.

The 7 Files are:

1. .gitignore – See, e.g., /scancode-ignore-binaries/.gitignore

/build/
/dist/

2. apache-2.0.LICENSE – See, e.g., /scancode-ignore-binaries/apache-2.0.LICENSE

3. MANIFEST.in

graft src

include setup.py
include setup.cfg
include .gitignore
include README.md
include MANIFEST.in
include NOTICE
include apache-2.0.LICENSE

global-exclude *.py[co] __pycache__ *.*~

4. NOTICE – See, e.g., /scancode-ignore-binaries/NOTICE

5. README.md

6. setup.cfg

[metadata]
license_file = NOTICE

[bdist_wheel]
universal = 1

[aliases]
release = clean --all bdist_wheel

7. setup.py – This is an example of what our setup.py file would look like:

#!/usr/bin/env python
-*- encoding: utf-8 -*-

from __future__ import absolute_import
from __future__ import print_function

from glob import glob
from os.path import basename
from os.path import join

(continues on next page)

4.1. Basic Tutorials 136

https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-ignore-binaries/.gitignore
https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-ignore-binaries/apache-2.0.LICENSE
https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-ignore-binaries/NOTICE

ScanCode-Toolkit

(continued from previous page)

from os.path import splitext

from setuptools import find_packages
from setuptools import setup

desc = '''A ScanCode post-scan plugin to to illustrate the creation of a simple post-
→˓scan plugin.'''

setup(
name='scancode-hello',
version='1.0.0',
license='Apache-2.0 with ScanCode acknowledgment',
description=desc,
long_description=desc,
author='nexB',
author_email='info@aboutcode.org',
url='https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-hello/',
packages=find_packages('src'),
package_dir={'': 'src'},
py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')],
include_package_data=True,
zip_safe=False,
classifiers=[

complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_
→˓classifiers

'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python',
'Programming Language :: Python :: 3',
'Topic :: Utilities',

],
keywords=[

'scancode', 'plugin', 'post-scan'
],
install_requires=[

'scancode-toolkit',
],
entry_points={

'scancode_post_scan': [
'hello = hello_scancode.hello_scancode:SayHello',

],
}

)

4.1. Basic Tutorials 137

ScanCode-Toolkit

2. 2nd-level folder – /src/

1. Add an __init__.py file inside the src folder. This file can be empty, and is used to indicate that the folder
should be treated as a Python package directory.

2. Add a folder that will contain our primary code – we’ll name the folder hello_scancode. If you look at the
example of the setup.py file above, you’ll see this line in the entry_points section:

'hello = hello_scancode.hello_scancode:SayHello',

• hello refers to the name of the command flag.

• The first hello_scancode is the name of the folder we just created.

• The second hello_scancode is the name of the .py file containing our code (discussed in the next section).

• SayHello is the name of the PostScanPlugin class we create in that file (see sample code below).

3. 3rd-level folder – /hello_scancode/

1. Add an __init__.py file inside the hello_scancode folder. As noted above, this file can be empty.

2. Add a hello_scancode.py file.

Imports

from plugincode.post_scan import PostScanPlugin
from plugincode.post_scan import post_scan_impl
from scancode import CommandLineOption
from scancode import POST_SCAN_GROUP

Create a PostScanPlugin class

The PostScanPlugin class PostScanPlugin code) inherits from the CodebasePlugin class (see CodebasePlugin
code), which inherits from the BasePlugin class (see BasePlugin code).

@post_scan_impl
class SayHello(PostScanPlugin):

"""
Illustrate a simple "Hello World" post-scan plugin.
"""

options = [
CommandLineOption(('--hello',),
is_flag=True, default=False,
help='Generate a simple "Hello ScanCode" greeting in the terminal.',
help_group=POST_SCAN_GROUP)

]

def is_enabled(self, hello, **kwargs):
return hello

(continues on next page)

4.1. Basic Tutorials 138

https://github.com/nexB/plugincode/blob/main/src/plugincode/post_scan.py
https://github.com/nexB/plugincode/blob/main/src/plugincode/__init__.py
https://github.com/nexB/plugincode/blob/main/src/plugincode/__init__.py
https://github.com/nexB/plugincode/blob/main/src/plugincode/__init__.py

ScanCode-Toolkit

(continued from previous page)

def process_codebase(self, codebase, hello, **kwargs):
"""
Say hello.
"""
if not self.is_enabled(hello):

return

print('Hello ScanCode!!')

Load the plugin

• To load and use the plugin in the normal course, navigate to the plugin’s root folder (in this example: /plugins/
scancode-hello/) and run pip install . (don’t forget the final .).

• If you’re developing and want to test your work, save your edits and run pip install -e . from the same
folder.

More-complex examples

This Hello ScanCode example is quite simple. For examples of more-complex structures and functionalities you can
take a look at the other post-scan plugins for guidance and ideas.

One good example is the License Policy post-scan plugin. This plugin is installed when ScanCode is installed and
consequently is not located in the /plugins/ directory used for manually-installed post-scan plugins. The code for
the License Policy plugin can be found at /scancode-toolkit/src/licensedcode/plugin_license_policy.py and illustrates
how a plugin can be used to analyze the results of a ScanCode scan using external data files and add the results of that
analysis as a new field in the ScanCode JSON output file.

4.1. Basic Tutorials 139

https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/plugin_license_policy.py

CHAPTER

FIVE

HOW-TO DOCUMENTS

How-To documents explain how to accomplish specific tasks.

5.1 How-To Guides

5.1.1 How To Add a New License for Detection

How to add a new license for detection?

To add a new license, you first need to select a new and unique license key (mit and gpl-2.0 are some of the existing
license keys).

The key name can contain only these symbols:

• lowercase letters from a to z,

• numbers from 0 to 9,

• dash - and . period signs. No spaces or underscore.

The license key also has to be fewer than 50 characters (same for short_name).

We also have to add a spdx_license_key which is either a valid SPDX license key at ` The SPDX license list <https:
//spdx.org/licenses/>`_, or a Licenseref-scancode-<key>.

All licenses are stored as a plain text file in the src/licensedcode/data/licenses directory using their key as base for the
file name. For example the filename for a license with key: mit would be mit.LICENSE.

You need to create a file with:

• the text of the license saved in plain text. We usually get rid of HTML tags or other special characters. We also
remove copyrights and only keep the original text as is, with the original formatting intact.

• the data attributes for the license in YAML format as YAML frontmatter.

See an example license: apache-2.0.LICENSE

There are a couple of mandatory attributes:

• key

• spdx_license_key

• short_name

• name

• category (Use “Unstated License” if not known)

140

https://spdx.org/licenses/
https://spdx.org/licenses/
https://python-frontmatter.readthedocs.io/en/latest/
https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/apache-2.0.LICENSE

ScanCode-Toolkit

• owner (Use “Unspecified” if not known)

And more attributes which are not mandatory but always nice to have (if applicable):

• other_spdx_license_keys

• osi_license_key

• minimum_coverage

• standard_notice

• notes

We want to use minimum_coverage when there are other licenses that are very similar and we want to make sure we
match these licenses correctly, and notes for interesting cases of licenses with descriptions to help identify origin,
similarities to other licenses, notes about the SPDX keys and others.

Some URLs:

• homepage_url

• text_urls

• osi_url

• faq_url

• other_urls

Also attributes having ignorables in the license text:

• ignorable_urls

• ignorable_copyrights

• ignorable_authors

• ignorable_holders

• ignorable_emails

See the src/licensedcode/data/licenses/ directory for many more examples.

Note: Add licenses in a local development installation and run scancode-reindex-licenses to make sure we reindex the
licenses and this validates the new licenses.

5.1.2 How to Add New License Rules for Enhanced Detection

ScanCode relies on license rules to detect licenses. A rule is a simple text file containing a license text or notice or
mention with YAML frontmatter with data attributes that tells ScanCode which license expression to report when the
text is detected, and other properties.

See the FAQ for a high level description of adding license detection rules.

5.1. How-To Guides 141

ScanCode-Toolkit

How to add a new license detection rule?

A license detection rule is a file with:

• a plain text that is typically a variant of a license text, notice or license mention.

• data as YAML frontmatter documenting license expression and other rule attributes.

To add a new rule, you need to pick a unique base file name. As a convention, we like to include the license expression
that should be detected in that name to make it more descriptive. For example: mit_and_gpl-2.0 is a good base name
for a rule that would detect an MIT and GPL-2.0 license combination at once. Add a suffix (usually numeric) to make
it unique if there is already a rule with this base name. Do not use spaces or special characters in that name.

Then create the rule file in the src/licensedcode/data/rules/ directory using this name; for example a rule with li-
cense_expression as mit AND apache-2.0 might have a filename: mit_and_apache-2.0_10.RULE.

Save your rule text in this file; if there are specific words like company names, projects or other, it is better to have rules
with and without these so we have better detection.

For a simple mit AND apache-2.0 license expression detection, here is an example rule file:

license_expression: mit AND apache-2.0
is_license_notice: yes
relevance: 100
referenced_filenames:

- LICENSE

License
The MIT License (MIT) + Apache 2.0. Read LICENSE.

See the src/licensedcode/data/rules/ directory for many examples.

More (advanced) rules options:

• you can use a notes text field to document this rule and explain where you found it first.

• if no license should be detected for your .RULE text, do not add a license expression, just add a notes field.

• Each rule needs to have one flag to describe the type of license rule. The options are:

– is_license_notice

– is_license_text

– is_license_tag

– is_license_reference

– is_license_intro

• There can also be false positive rules, which if detected in the file scanned, will not be present in the result license
detections. These just have the license text and a is_false_positive flag set to True.

• you can specify key phrases by surrounding one or more words between the {{ and }} tags. Key phrases are words
that must be matched/present in order for a RULE to be considered a match.

See the src/licensedcode/models.py directory for a list of all possible values and other options.

Note: Add rules in a local developement installation and run scancode-reindex-licenses to make sure we reindex the
rules and this validates the new licenses.

5.1. How-To Guides 142

ScanCode-Toolkit

5.1.3 How to Install External Licenses to Use in License Detection

Users can install external licenses and rules in the form of:

1. reusable plugins

2. license directories

These licenses and rules are then used in license detection.

How to install a plugin containing external licenses and/or rules

To create a plugin with external licenses or rules, we must create a Python package containing the license and/or rule
files. Python packages can have many different file structures. You can find an example package in:

tests/licensedcode/data/additional_licenses/additional_plugin_1.

This is the basic structure of the example plugin:

licenses_to_install1/
src/

licenses_to_install1/
licenses/

example-installed-1.LICENSE
| rules/

example-installed-1.RULE
__init__.py

apache-2.0.LICENSE
MANIFEST.in
setup.cfg
setup.py

Entry points definition in setup.py

First, in setup.py, you must provide an entry point called scancode_location_provider. This allows ScanCode
Toolkit to discover the plugin and use it in license detection. Here is the definition of entry_points in setup.py:

entry_points={
'scancode_location_provider': [

'licenses_to_install1 = licenses_to_install1:LicensesToInstall1Paths',
],

},

The scancode_location_provider entry point maps to a list with information about the plugin. The variable
licenses_to_install1 is the name of the entry point. All entry point names must start with the prefix licenses,
or else ScanCode Toolkit will not use them in license detection.

5.1. How-To Guides 143

ScanCode-Toolkit

Directory structure

licenses_to_install1 is set to licenses_to_install1:LicensesToInstall1Paths. Note that in src, we
have another directory called licenses_to_install1 and in licenses_to_install1/__init__.py, we define
the class LicensesToInstall1Paths. These two values make up the entry point definition.

LicensesToInstall1Paths is a subclass of LocationProviderPlugin and implements the method
get_locations(). The class you define in __init__.py must also subclass LocationProviderPlugin
and implement this method.

Finally, the same directory containing the class definition must also contain the licenses and/or rules. Licenses must
be contained in a directory called licenses and rules must be contained in a directory called rules.

See How To Add a New License for Detection and How to Add New License Rules for Enhanced Detection to understand
the structure of license and rule files, respectively.

After creating this plugin, you can upload it to PyPI so that others can use it, or you can leave it as a local directory.

Installing and using the plugin

To use the plugin in license detection, all you need to do is:

1. Configure the scancode-toolkit virtualenv and activate.

2. Install the package with pip like the following: pip install tests/licensedcode/data/
additional_licenses/additional_plugin_2/

3. Reindex licenses using scancode-reindex-licenses.

Note: Installing the plugin will not add the licenses/rules to the index automatically, they will be indexed only after
running scancode-reindex-licenses.

Once it is installed, the contained licenses and rules will automatically be used in license detection assuming the plugin
follows the correct directory structure conventions.

Writing tests for new installed licenses

Look at tests/licensedcode/data/example_external_licenses/licenses_to_install1 to see an example
of a plugin with tests. The tests are contained in the tests directory:

licenses_to_install1/
src/

licenses_to_install1/
licenses/

example-installed-1.LICENSE
rules/

example-installed-1.RULE
__init__.py/

tests/
data/

example-installed-1.txt
example-installed-1.txt.yml

test_detection_datadriven.py
(continues on next page)

5.1. How-To Guides 144

ScanCode-Toolkit

(continued from previous page)

apache-2.0.LICENSE
MANIFEST.in
setup.cfg
setup.py

To write your own tests, first make sure setup.py includes scancode-toolkit as a dependency:

...
install_requires=[

'scancode-toolkit',
],
...

Then you can define a test class and call the build_tests method defined in licensedcode_test_utils, passing
in the test directory and the test class as parameters:

TEST_DIR = abspath(join(dirname(__file__), 'data'))

class TestLicenseDataDriven1(unittest.TestCase):
pass

licensedcode_test_utils.build_tests(
TEST_DIR,
clazz=TestLicenseDataDriven1, regen=scancode_config.REGEN_TEST_FIXTURES)

The tests/data directory contains one file for each license: a license text file with a YAML frontmatter specifying
the expected license expression from the test.

Finally, install the plugin and run the test:

pytest -vvs tests/test_detection_datadriven.py.

Note: Once you install a external license plugin, you have to reconfigure scancode-toolkit (or use pip uninstall)
to uninstall the plugin to completely remove it. Otherwise using the –only-builtin option only regenerates the index
without the installed plugins, but another Reindex would have the licenses/rules from the installed plugins.

How to add external licenses and/or rules from a directory

This is the basic structure of the example license directory:

additional_license_directory/
licenses/

example-installed-1.LICENSE
rules/

example-installed-1.RULE

5.1. How-To Guides 145

ScanCode-Toolkit

Adding the licenses to the index

To add the licenses in the directory to the index, all you need to do is:

1. Configure the scancode-toolkit virtualenv and activate.

2. Run scancode-reindex-licenses with:

--additional-directory tests/licensedcode/data/additional_licenses/additional_dir/

Note: Adding licenses/rules from an additional directory is not permanent. Another reindexing without the additional
directory option would just use the builtin scancode licenses and rules, and will not have these additonal licenses/rules
anymore.

Once the licenses/rules are in the index, they will automatically be used in license detection.

scancode-reindex-licenses Usage

Usage: scancode-reindex-licenses [OPTIONS]

Reindex scancode licenses and exit

Options

--all-languages [EXPERIMENTAL] Rebuild the license index including texts all lan-
guages (and not only English) and exit.

--only-builtin Rebuild the license index excluding any additional license directory
or additional license plugins which were added previously, i.e. with
only builtin scancode license and rules.

--additional-directory DIR Include this directory with additional custom licenses and li-
cense rules in the license detection index.

--load-dump Load all license and rules from their respective files and then dump
them back to those same files.

-h, --help Shows the options and explanations.

5.1.4 How To Generate Attribution from a ScanCode Scan

How To generate attribution from a ScanCode scan?

Users can use an Open Source Project “AboutCode Toolkit” to generate attrbution document from a ScanCode scan.

Read more about AboutCode Toolkit here: https://aboutcode-toolkit.readthedocs.io/.

Check out the code at https://github.com/nexB/aboutcode-toolkit

Command in AboutCode Toolkit to generate attribution: https://aboutcode-toolkit.readthedocs.io/en/latest/reference.
html#attrib.

5.1. How-To Guides 146

https://aboutcode-toolkit.readthedocs.io/
https://github.com/nexB/aboutcode-toolkit
https://aboutcode-toolkit.readthedocs.io/en/latest/reference.html#attrib
https://aboutcode-toolkit.readthedocs.io/en/latest/reference.html#attrib

ScanCode-Toolkit

Attention: The attribution requires the ScanCode scan to have at least the –info and –license option flagged

5.1. How-To Guides 147

CHAPTER

SIX

CONTRIBUTE TO SCANCODE

6.1 Contribute

6.1.1 Contributing to Code Development

TL;DR:

• Contributions comes as bugs/questions/issues and as pull requests.

• Source code and runtime data are in the /src/ directory.

• Test code and test data are in the /tests/ directory.

• Datasets (inluding licenses) and test data are in /data/ sub-directories.

• We use DCO signoff in commit messages, like Linux does.

• Porting ScanCode to other OS (FreeBSD is supported, etc.) is possible. Enter an issue for help.

See CONTRIBUTING.rst for details.

Code layout and conventions

Source code is in the src/ directory, tests are in the tests/ directory. Miscellaneous scripts and configuration files
are in the etc/ directory.

There is one Python package for each major feature under src/ and a corresponding directory with the same name
under tests (but this is not a package by design as it would not make sense to have a top level “tests” package which
is a name that’s too common).

Each test script is named test_XXXX; we prefer organizing tests in subclasses of the standard library unittestmodule.
But we also use plain functions that are discovered nicely by pytest.

When source or tests need data files, we store these in a data subdirectory. This is used extensively in tests and also
in source code for the reference license texts and data and license detection rules files.

We use PEP8 conventions with a relaxed line length that can be up to 90’ish characters long when needed to keep the
code clear and readable.

We write tests, a lot of tests, thousands of tests. When finding bugs or adding new features, we add tests. See existing
test code for examples which form also a good specification for the supported features.

The tests should pass on Linux 64 bits, Windows 64 bits and on macOS 10.14 and up. We maintain multiple CI
loops with Azure (all OSes) at https://dev.azure.com/nexB/scancode-toolkit/_build and Appveyor (Windows) at https:
//ci.appveyor.com/project/nexB/scancode-toolkit .

148

https://github.com/nexB/scancode-toolkit/blob/develop/CONTRIBUTING.rst
https://dev.azure.com/nexB/scancode-toolkit/_build
https://ci.appveyor.com/project/nexB/scancode-toolkit
https://ci.appveyor.com/project/nexB/scancode-toolkit

ScanCode-Toolkit

Several tests are data-driven and use data files as test input and sometimes data files as test expectation (in this case
using either JSON or YAML files); a large number of copyright, license and package manifest parsing tests are such
data-driven tests.

Running tests

ScanCode comes with over 29,000 unit tests to ensure detection accuracy and stability across Linux, Windows and
macOS OSes: we kinda love tests, do we?

We use pytest to run the tests: call the pytest script to run the whole test suite. This is installed with the pytest
package which is installed when you run ./configure --dev).

If you are running from a fresh git clone and you run ./configure and then source venv/bin/activate the
pytest command will be available in your path.

Alternatively, if you have already configured but are not in an activated “virtualenv” the pytest command is available
under <root of your checkout>/venv/bin/pytest

(Note: paths here are for POSIX, but mostly the same applies to Windows)

If you have a multiprocessor machine you might want to run the tests in parallel (and faster). For instance: pytest
-n4 runs the tests on 4 CPUs. We typically run the tests in verbose mode with pytest -vvs -n4.

You can also run a subset of the test suite as shown in the CI configs https://github.com/nexB/scancode-toolkit/
blob/develop/azure-pipelines.yml e,g, pytest -n 2 -vvs tests/scancode runs only the test scripts present in the
tests/scancode directory. (You can give the path to a specific test script file there too).

See also https://docs.pytest.org for details or use the pytest -h command to show the many other options available.

One useful option is to run a select subset of the test functions matching a pattern with the -k option, for instance:
pytest -vvs -k tcpdump would only run test functions that contain the string “tcpdump” in their name or their
class name or module name.

Another useful option after a test run with some failures is to re-run only the failed tests with the --lf option, for
instance: pytest -vvs --lf would only run only test functions that failed in the previous run.

Because we have a lot of tests (over 29,000), we organized theses in test suites using pytest markers that are defined in
the conftest.py pytest plugin. These are enabled by adding a --test-suite option to the pytest command.

• --test-suite=standard is the default and runs a decent but basic test suite

• --test-suite=all runs the standard test and adds a comprehensive test suite

• --test-suite=validate runs the standra and all test and adds extensive data-driven and data validations
(for package, copyright and license detection)

In some cases we need to regenerate test data when expected behavious/result data structures change, and we have an
environement variable to regenerate test data. SCANCODE_REGEN_TEST_FIXTURES is present in scancode_config
and this can be set to regenerate test data for specific tests like this:

SCANCODE_REGEN_TEST_FIXTURES=yes pytest -vvs tests/packagedcode/test_package_models.py

This command will only regenerate test data for only the tests in test_package_models.py, and we can further specify
the tests to regen by using more pytest options like –lf and -k test_instances.

If test data is regenerated, it is important to review the diff for test files and carefully go through all of it to make sure
there are no unintended changes there, and then commit all the regenerated test data.

To help debug in scancode, we use logging. There are different environement variables you need to set to turn on
logging. In packagedcode:

6.1. Contribute 149

https://github.com/nexB/scancode-toolkit/blob/develop/azure-pipelines.yml
https://github.com/nexB/scancode-toolkit/blob/develop/azure-pipelines.yml
https://docs.pytest.org

ScanCode-Toolkit

``SCANCODE_DEBUG_PACKAGE=yes pytest -vvs tests/packagedcode/ --lf``

Or set the TRACE variable to True. This enables logger_debug functions logging variables and shows code execution
paths by logging and printing the logs in the terminal. If debugging full scans run by click, you have to raise exceptions
in addition to setting the TRACE to enable logging.

Thirdparty libraries and dependencies management

ScanCode uses the configure and configure.bat scripts to install a virtualenv , install required packaged depen-
dencies using setuptools and such that ScanCode can be installed in a repeatable and consistent manner on all OSes
and Python versions.

For this we maintain a setup.cfg with our direct dependencies with loose minimum version constraints; and we keep
pinned exact versions of these dependencies in the requirements.txt and requirements-dev.txt (for testing and
development).

Note: we also have a setup-mini.cfg used to create a ScanCode PyPI package with minimal dependencies (and
limited features). This is mostly duplicated from setup.cfg.

And to ensure that we also all use well known version of the core virtualenv, pip, setuptools and wheel libraries, we
use the virtualenv.pyz Python zipp app from https://github.com/pypa/get-virtualenv/tree/main/public and store it
in the Git repo in the etc/thirdparty directory.

We bundle pre-built bundled native binaries as plugins which are installed as wheels. These binaries are organized by
OS and architecture; they ensure that ScanCode works out of the box either using a checkout or a download, without
needing a compiler and toolchain to be installed.

The corresponding source code and build scripts for all for the pre-built binaries are stored in a separate repository at
https://github.com/nexB/scancode-plugins

ScanCode app archives should not require network access for installation or configuration of its third-party libraries
and dependencies. To enable this, we store bundled thirdparty components and libraries in the thirdparty directory
of released app archives; this is done at build time. These dependencies are stored as pre-built wheels. These wheels
are sometimes built by us when there is no wheel available upstream on PyPI. We store all these prebuilt wheels with
corresponding .ABOUT and .LICENSE files in https://github.com/nexB/thirdparty-packages/tree/main/pypi which is
published for download at https://thirdparty.aboutcode.org/pypi/

Because this is used by the configure script, all the thirdparty dependencies used in ScanCode MUST be avail-
able there first. Therefore adding a new dependency means requesting a merge/PR in https://github.com/nexB/
thirdparty-packages/ first that contains all the recursive dependencies.

There are utility scripts in etc/release that can help with the dependencies management process in particular to
build or update wheels with native code for multiple OSes (Linux, macOS and Windows) and multiple Python versions
(3.8+), which is not a completely simple operation (and requires eventually 12 wheels and one source distribution to
be published as we support 3 OSes and 5 Python versions).

Using ScanCode as a Python library

ScanCode can be used also as a Python library and is available as a Python wheel in PyPi and installed with pip
install scancode-toolkit or pip install scancode-toolkit-mini.

Since we do not pin dependencies to avoid dependency resolution conflicts for downstream users, there are
possibilities of issues arising from dependencies silently changing API/functions which scancode uses.

6.1. Contribute 150

https://virtualenv.pypa.io/en/stable/
https://github.com/pypa/setuptools
https://github.com/pypa/get-virtualenv/tree/main/public
https://github.com/nexB/scancode-plugins
https://github.com/nexB/thirdparty-packages/tree/main/pypi
https://thirdparty.aboutcode.org/pypi/
https://github.com/nexB/thirdparty-packages/
https://github.com/nexB/thirdparty-packages/

ScanCode-Toolkit

6.1.2 How to cut a new release

Update version

• Bump version to update major, minor or patch version in setup.cfg setup-mini.cfg and src/
scancode_config.py. Note that this is SemVer, though we used CalVer previously, we have switched back to
SemVer.

• If scancode output data format is changed, increment manually the major, minor or patch version to bump the
version in src/scancode_config.py. Note that this is SemVer.

See our :ref:versioning for more details.

Tag and publish

• Changes for a release should also be pushed to a branch and a Pull Request should be created for it, for review.

• Update the CHANGELOG.rst with detailed documentation of updates and API/CLI option changes, or any sig-
nificant changes.

• Commit these changes and push changes to develop (here we use an example tag v1.6.1):

– git commit -s

– git push --set-upstream origin release-prep-v1.6.1

• Merge this release-prep-v1.6.1 branch in develop after review approval and tag the release:

– git tag -a v1.6.1 -m "Release v1.6.1"

– git push --set-upstream origin release-prep-v1.6.1

– git push --set-upstream origin v1.6.1

Automated Release Process

• We have an automated release script triggered by a pushed tag, where jobs run to:

– Build pypi wheels and sdist archives

– Build app release archives for linux/mac/windows

– This happens for all supported python versions

– Test these wheels and app archives in linux/mac/windows for all supported versions of python

– Create a GitHub release (draft by default) with all wheels, sdists and app archives (for all os/python com-
binations)

– Upload sdists and wheels (all python versions) and publish a release (This won’t be a stable release for
beta/release-candidate tags)

• Populate the draft GitHub release by clicking the Generate Release Notes button and this pre-populates the
release notes with PRs and contributors.

• Add more details to the release notes talking about the key features and changes in the release.

• Publish the release on GitHub (Note the Set as a pre-release vs Set as the latest release check-
boxes)

• Announce in public channels and chats about the release

• Do test the release archives yourself.

6.1. Contribute 151

https://github.com/nexB/scancode-toolkit/actions/workflows/scancode-release.yml

ScanCode-Toolkit

6.1.3 Contributing to the Documentation

Setup Local Build

To get started, create or identify a working directory on your local machine.

Open that directory and execute the following command in a terminal session:

git clone https://github.com/nexB/scancode-toolkit.git

That will create an /scancode-toolkit directory in your working directory. Now you can install the dependencies
in a virtualenv:

cd scancode-toolkit
./configure --docs

Note: In case of windows, run configure --docs instead of this.

Now, this will install the following prerequisites:

• Sphinx

• sphinx_rtd_theme (the format theme used by ReadTheDocs)

• docs8 (style linter)

These requirements are already present in setup.cfg and ./configure –docs installs them.

Now you can build the HTML documents locally:

source venv/bin/activate
cd docs
make html

Assuming that your Sphinx installation was successful, Sphinx should build a local instance of the documentation .html
files:

open build/html/index.html

Note: In case this command did not work, for example on Ubuntu 18.04 you may get a message like “Couldn’t get a
file descriptor referring to the console”, try:

see build/html/index.html

You now have a local build of the AboutCode documents.

6.1. Contribute 152

ScanCode-Toolkit

Share Document Improvements

Ensure that you have the latest files:

git pull
git status

Before commiting changes run Continious Integration Scripts locally to run tests. Refer Continuous Integration for
instructions on the same.

Follow standard git procedures to upload your new and modified files. The following commands are examples:

git status
git add source/index.rst
git add source/how-to-scan.rst
git status
git commit -m "New how-to document that explains how to scan"
git status
git push
git status

The Scancode-Toolkit webhook with ReadTheDocs should rebuild the documentation after your Pull Request is
Merged.

Refer the Pro Git Book available online for Git tutorials covering more complex topics on Branching, Merging, Rebasing
etc.

Continuous Integration

The documentations are checked on every new commit through Travis-CI, so that common errors are avoided and
documentation standards are enforced. Travis-CI presently checks for these 3 aspects of the documentation :

1. Successful Builds (By using sphinx-build)

2. No Broken Links (By Using link-check)

3. Linting Errors (By Using Doc8)

So run these scripts at your local system before creating a Pull Request:

cd docs
./scripts/sphinx_build_link_check.sh
./scripts/doc8_style_check.sh

If you don’t have permission to run the scripts, run:

chmod u+x ./scripts/doc8_style_check.sh

6.1. Contribute 153

https://git-scm.com/book/en/v2/

ScanCode-Toolkit

Style Checks Using Doc8

How To Run Style Tests

In the project root, run the following commands:

$ cd docs
$./scripts/doc8_style_check.sh

A sample output is:

Scanning...
Validating...
docs/source/misc/licence_policy_plugin.rst:37: D002 Trailing whitespace
docs/source/misc/faq.rst:45: D003 Tabulation used for indentation
docs/source/misc/faq.rst:9: D001 Line too long
docs/source/misc/support.rst:6: D005 No newline at end of file
========
Total files scanned = 34
Total files ignored = 0
Total accumulated errors = 326
Detailed error counts:

- CheckCarriageReturn = 0
- CheckIndentationNoTab = 75
- CheckMaxLineLength = 190
- CheckNewlineEndOfFile = 13
- CheckTrailingWhitespace = 47
- CheckValidity = 1

Now fix the errors and run again till there isn’t any style error in the documentation.

What is Checked?

PyCQA is an Organization for code quality tools (and plugins) for the Python programming language. Doc8 is a
sub-project of the same Organization. Refer this README for more details.

What is checked:

• invalid rst format - D000

• lines should not be longer than 100 characters - D001

– RST exception: line with no whitespace except in the beginning

– RST exception: lines with http or https URLs

– RST exception: literal blocks

– RST exception: rst target directives

• no trailing whitespace - D002

• no tabulation for indentation - D003

• no carriage returns (use UNIX newlines) - D004

• no newline at end of file - D005

6.1. Contribute 154

https://github.com/PyCQA/doc8/blob/main/README.rst

ScanCode-Toolkit

Interspinx

ScanCode toolkit documentation uses Intersphinx to link to other Sphinx Documentations, to maintain links to other
Aboutcode Projects.

To link sections in the same documentation, standart reST labels are used. Refer Cross-Referencing for more informa-
tion.

For example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

Now, using Intersphinx, you can create these labels in one Sphinx Documentation and then referance these labels from
another Sphinx Documentation, hosted in different locations.

You just have to add the following in the conf.py file for your Sphinx Documentation, where you want to add the links:

extensions = [
'sphinx.ext.intersphinx'
]

intersphinx_mapping = {'aboutcode': ('https://aboutcode.readthedocs.io/en/latest/',␣
→˓None)}

To show all Intersphinx links and their targets of an Intersphinx mapping file, run:

python -msphinx.ext.intersphinx https://aboutcode.readthedocs.io/en/latest/objects.inv

Warning: python -msphinx.ext.intersphinx https://aboutcode.readthedocs.io/objects.inv
will give error.

This enables you to create links to the aboutcode Documentation in your own Documentation, where you modified
the configuration file. Links can be added like this:

For more details refer :ref:`aboutcode:doc_style_guide`.

You can also not use the aboutcode label assigned to all links from aboutcode.readthedocs.io, if you don’t have a label
having the same name in your Sphinx Documentation. Example:

For more details refer :ref:`doc_style_guide`.

If you have a label in your documentation which is also present in the documentation linked by Intersphinx, and you
link to that label, it will create a link to the local label.

For more information, refer this tutorial named Using Intersphinx.

6.1. Contribute 155

http://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
https://www.sphinx-doc.org/en/master/usage/referencing.html#cross-referencing-arbitrary-locations
https://my-favorite-documentation-test.readthedocs.io/en/latest/using_intersphinx.html

ScanCode-Toolkit

Style Conventions for the Documentaion

1. Headings

(Refer) Normally, there are no heading levels assigned to certain characters as the structure is deter-
mined from the succession of headings. However, this convention is used in Python’s Style Guide for
documenting which you may follow:

with overline, for parts

• with overline, for chapters

=, for sections

-, for subsections

^, for sub-subsections

“, for paragraphs

2. Heading Underlines

Do not use underlines that are longer/shorter than the title headline itself. As in:

Correct :

Extra Style Checks

Incorrect :

Extra Style Checks

Note: Underlines shorter than the Title text generates Errors on sphinx-build.

3. Internal Links

Using :ref: is advised over standard reStructuredText links to sections (like `Section title`_)
because it works across files, when section headings are changed, will raise warnings if incorrect, and
works for all builders that support cross-references. However, external links are created by using the
standard `Section title`_ method.

4. Eliminate Redundancy

If a section/file has to be repeated somewhere else, do not write the exact same section/file twice.
Use .. include: ../README.rst instead. Here, ../ refers to the documentation root, so file
location can be used accordingly. This enables us to link documents from other upstream folders.

5. Using :ref: only when necessary

Use :ref: to create internal links only when needed, i.e. it is referenced somewhere. Do not create
references for all the sections and then only reference some of them, because this created unnecessary
references. This also generates ERROR in restructuredtext-lint.

6. Spelling

You should check for spelling errors before you push changes. Aspell is a GNU project Command
Line tool you can use for this purpose. Download and install Aspell, then execute aspell check
<file-name> for all the files changed. Be careful about not changing commands or other stuff as

6.1. Contribute 156

http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections
http://aspell.net/

ScanCode-Toolkit

Aspell gives prompts for a lot of them. Also delete the temporary .bak files generated. Refer the
manual for more information on how to use.

7. Notes and Warning Snippets

Every Note and Warning sections are to be kept in rst_snippets/note_snippets/ and
rst_snippets/warning_snippets/ and then included to eliminate redundancy, as these are fre-
quently used in multiple files.

8. Redirects

If layouts of doc pages are being changed and these could be referenced elsewhere, these should be
added in the redirects mapping in conf.py. For examples on using these see https://documatt.gitlab.
io/sphinx-reredirects/usage.html

Converting from Markdown

If you want to convert a .md file to a .rst file, this tool does it pretty well. You’d still have to clean up and check for
errors as this contains a lot of bugs. But this is definitely better than converting everything by yourself.

This will be helpful in converting GitHub wiki’s (Markdown Files) to reStructuredtext files for Sphinx/ReadTheDocs
hosting.

Automatic Docs Generation

It’s possible to generate docs automatically from data by using a combination of:

• shell scripts: example

• python scripts: example

• jinja templates: example

And we do this currently to keep a documentation page for all the supported package formats. See Supported package
manifests and package datafiles for details.

6.1.4 Roadmap

This is a high level list of what we are working on and what is completed.

This is not updated regularly, see the milestones instead for updated shorter and longer term roadmaps.

Legend

completed In progress Planned, not started

6.1. Contribute 157

http://aspell.net/man-html/
https://documatt.gitlab.io/sphinx-reredirects/usage.html
https://documatt.gitlab.io/sphinx-reredirects/usage.html
https://github.com/chrissimpkins/md2rst
https://github.com/nexB/scancode-toolkit/blob/develop/docs/scripts/regen_package_docs.sh
https://github.com/nexB/scancode-toolkit/blob/develop/src/packagedcode/regen_package_docs.py
https://github.com/nexB/scancode-toolkit/blob/develop/src/packagedcode/templates/available_package_parsers.rst
https://github.com/nexB/scancode-toolkit/milestones

ScanCode-Toolkit

Work in Progress

(see Completed features below)

Package manifest and dependency parsers

• Docker image base (as part of: https://github.com/pombredanne/conan) #651

• RubyGems base and dependencies #650 (code in https://github.com/nexB/scancode-toolkit-contrib/)

• Perl, CPAN (basic in https://github.com/nexB/scancode-toolkit-contrib/)

• Go : parsing for Godep in https://github.com/nexB/scancode-toolkit-contrib/

• Windows PE #652

• RPM dependencies #649

• Windows Nuget dependencies #648

• Bower packages #654

• Python dependencies #653

• CRAN

• Plain packages

• other Java-related meta files (SBT, Ivy, Gradle, etc.)

• Debian debs

• other JavaScript (jspm, etc.)

• other Linux distro packages

License Detection

• support and detect license expressions (code in https://github.com/nexB/license-expression)

• support and detect composite licenses

• support custom licenses

• move licenses data set to external separate repository

• Improved unknown license detection

• sync with external sources (DejaCode, SPDX, etc.)

Copyrights

• speed up copyright detection

• improved detected lines range

• streamline grammar of copyright parser

• normalize holders and authors for summarizing

• normalize and streamline results data format

6.1. Contribute 158

https://github.com/pombredanne/conan
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/license-expression

ScanCode-Toolkit

Core features

• pre scan filtering (ignore binaries, etc)

• pre/post/ouput plugins! (worked as part of the GSoC by @yadsharaf)

• scan plugins (e.g. plugins that run a scan to collect data)

• support Python 3 #295

• transparent archive extraction (as opposed to on-demand with extractcode)

• scancode.yml configuration file for exclusions, defaults, scan failure conditions, etc.

• support scan pipelines and rules to organize more complex scans

• scan baselining, delta scan and failure conditions (such as license change, etc) (spawned as its the DeltaCode
project)

• dedupe and similarities to avoid re-scanning. For now only identical files are scanned only once.

• Improved logging, tracing and error diagnostics

• native support for ABC Data (See AboutCode Data Structure (ABCD))

Classification, summarization and deduction

• File classification #426

• summarize and aggregate data #377 at the top level

Source code support (some will be spawned as their own tool)

• symbols : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

• metrics : some elements in https://github.com/nexB/scancode-toolkit-contrib/

Compiled code support (will be spawned as their own tool)

• ELFs : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

• Java bytecode : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

• Windows PE : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

• Mach-O : parsing complete in in https://github.com/nexB/scancode-toolkit-contrib/

• Dalvik/dex

6.1. Contribute 159

https://github.com/nexB/deltacode/
https://aboutcode.readthedocs.io/en/latest/aboutcode-data/abcd.html#aboutcode-data
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/

ScanCode-Toolkit

Data exchange

• SPDX data conversion #338

Packaging

• simpler installation, automated installer

• distro-friendly packaging

• unbundle and package as multiple libaries (commoncode, extractcode, etc)

Documentation

• integration in a build/CI loop

• end to end guide to analyze a codebase

• hacking guides

• API doc when using ScanCode as a library

CI integration

• Plugins for CI (Jenkins, etc)

• Integration for CI (Travis, Appveyor, Drone, etc)

Other work in progress

• ScanCode server: Separate project: https://github.com/nexB/scancode-server. Will include Integration /
webhooks for Github, Bitbucket.

• VulnerableCode: NVD and CVE lookups: Separate project: https://github.com/nexB/vulnerablecode

• ScanCode Workbench: desktop app for scan review: Separate project: https://github.com/nexB/
scancode-workbench

• DependentCode: dynamic dependencies resolutions: Separate project: https://github.com/nexB/
dependentcode

Package mining and matching

(Note that this will be a separate project) Some code is in https://github.com/nexB/scancode-toolkit-contrib/

• exact matching

• attribute-based matching

• fuzzy matching

• peer-reviewed meta packages repo

• basic mining of package repositories

6.1. Contribute 160

https://github.com/nexB/scancode-server
https://github.com/nexB/vulnerablecode
https://github.com/nexB/scancode-workbench
https://github.com/nexB/scancode-workbench
https://github.com/nexB/dependentcode
https://github.com/nexB/dependentcode
https://github.com/nexB/scancode-toolkit-contrib/

ScanCode-Toolkit

Other

• Crypto code detection

Completed features

Core scans

• exact license detection

• approximate license detection

• copyright detection

• file information (size, type, etc.)

• URLs, emails, authors

Outputs and UI

• JSON compact and pretty

• plain HTML tables, also usable in a spreadsheet

• fancy HTML ‘app’ with a file tree navigation, and scan results filtering, search and sorting

• simple scan summary

• SPDX output

Package and dependencies

• common model for package data

• basic support for common package format

• RPM package base

• NuGet package base

• Python package base

• PHP Composer package support with dependencies

• Java Maven POM package support with dependencies

• npm package support with dependencies

6.1. Contribute 161

ScanCode-Toolkit

Speed!

• accelerate license detection indexing and scanning; include caching

• scan using multiple processes to speed up overall scan

• cache per-file scan to disk and stream final results

Other

• archive extraction with extractcode

• conversion of scan results to CSV

• improved error handling, verbose and diagnostic output

6.1.5 Google Summer of Code 2017 - Final report

Project: Plugin architecture for ScanCode

Yash D. Saraf yashdsaraf@gmail.com

This project’s purpose was to create a decoupled plugin architecture for ScanCode such that it can handle plugins at
different stages of a scan and can be coupled at runtime. These stages were,

1. Format :

In this stage, the plugins are supposed to run after the scanning is done and post-scan plugins are called. These
plugins could be used for:

• converting the scanned output to the given format (say csv, json, etc.)
HOWTO
Here, a plugin needs to add an entry in the scancode_output_writers entry point in the following format :
'<format> = <module>:<function>'.

• <format> is the format name which will be used as the command line option name (e.g csv or json).

• <module> is a python module which implements the output hook specification.

• <function> is the function to which the scan output will be passed if this plugin is called.

The <format> name will be automatically added to the --format command line option and (if called) the scanned
data will be passed to the plugin.

6.1. Contribute 162

mailto:yashdsaraf@gmail.com
https://github.com/nexB/scancode-toolkit

ScanCode-Toolkit

2. Post-scan :

In this stage, the plugins are supposed to run after the scanning is done. Some uses for these plugins were:

• summarization of scan outputs
e.g A post-scan plugin for marking is_source to true for directories with ~90% of source files.

• simplification of scan outputs
e.g The --only-findings option to return files or directories with findings for the requested scans.
Files and directories without findings are omitted (not considering basic file information as findings)).

This option already existed, I just ported it to a post-scan plugin.

HOWTO
Here, a plugin needs to add an entry in the scancode_post_scan entry point in the following format '<name> =
<module>:<function>'

• <name> is the command line option name (e.g only-findings).
• <module> is a python module which implements the post_scan hook specification.

• <function> is the function to which the scanned files will be passed if this plugin is called

The command line option for this plugin will be automatically created using the <function> ‘s doctring as its help
text and (if called) the scanned files will be passed to the plugin.

3. Pre-scan :

In this stage, the plugins are supposed to run before the scan starts. So the potential uses for these types of plugins
were to:

• ignore files based on a given pattern (glob)
• ignore files based on their info i.e size, type etc.
• extract archives before scanning

HOWTO
Here, a plugin needs to add an entry in the scancode_pre_scan entry point in the following format : '<name> =
<module>:<class>'

• <name> is the command line option name (e.g ignore).

• <module> is a python module which implements the pre_scan hook specification.

• <class> is the class which is instantiated and its appropriate method is invoked if this plugin is called. This
needs to extend the plugincode.pre_scan.PreScanPlugin class.

The command line option for this plugin will be automatically created using the <class> ‘s doctring as its help text.
Since there isn’t a single spot where pre-scan plugins can be plugged in, more methods to PreScanPlugin class can
be added which can represent different hooks, say to add or delete a scan there might be a method called process_scan.

If a plugin’s option is passed by the user, then the <class> is instantiated with the user input and its appropriate
aforementioned methods are called.

6.1. Contribute 163

ScanCode-Toolkit

4. Scan (proper):

In this stage, the plugins are supposed to run before the scan starts and after the pre-scan plugins are called. These
plugins would have been used for

• adding or deleting scans
• adding dependency scans (whose data could be used in other scans)

No development has been done for this stage, but it will be quite similar to pre-scan.

5. Other work:

Group cli options in cli help

Here, the goal was to add command line options to pre-defined groups such that they are displayed in their respective
groups when scancode -h or scancode --help is called. This helped to better visually represent the command line
options and determine more easily what context they belong to.

Add a Resource class to hold all scanned info * Ongoing *

Here, the goal was to create a Resource class, such that it holds all the scanned data for a resource (i.e a file or a
directory). This class would go on to eventually encapsulate the caching logic entirely. For now, it just holds the info
and path of a resource.

6. What’s left?

• Pre-scan plugin for archive extractions

• Scan (proper) plugins

• More complex post-scan plugins

• Support plugins written in languages other than python

Additionally, all my commits can be found here.

6.1.6 Google Summer of Code 2019 - Final report

Project: scancode-toolkit to Python 3

Owner: Abhishek Kumar

Mentor: Philippe Ombredanne

Overview

Problem: Since Python 2.7 will retire in few months and will not be maintained any longer.

Solution: Scancode needs to be ported to python 3 and all test suites must pass on both version of Python. The main
difference that makes Python 3 better than Python 2.x is that the support for unicode is greatly improved in Python 3.
This will also be useful for scancode as scancode has users in more than 100 languages and it’s easy to translate strings
from unicode to other languages.

Objective: To make scancode-toolkit installable on on Python 3.6 and higher, as presently it installs with Python 2.7
only.

6.1. Contribute 164

https://github.com/nexB/scancode-toolkit/issues/709
https://github.com/nexB/scancode-toolkit/issues/738
https://github.com/nexB/scancode-toolkit/commits/develop?author=yashdsaraf
https://github.com/Abhishek-Dev09
https://github.com/pombredanne
https://github.com/nexB/scancode-toolkit/

ScanCode-Toolkit

Implementation

• It was started in development mode(editable mode) and then it was moved to work in virtual environments.

• I have worked module by module according to the order of hierarchy of modules. For example :All module is
dependent on commoncode, so it must be ported first. In this way we have created the Porting order:

1. commoncode

2. plugincode

3. typecode

4. extractcode

5. textcode

6. scancode basics (some tests are integration tests and will have to wait to be ported)

7. formattedcode, starting with JSON (some tests are integration tests and will have to wait to be ported)

8. cluecode

9. licensedcode

10. packagedcode (depends on licensecode)

11. summarycode

12. fixup the remaining bits and tests

After porting each module, I have marked these modules as ported scanpy3 with help of conffest plugin (created by
@pombredanne). Conffest plugin is heart of this project. Without this, it was very difficult to do. Dependencies was
fixed at the time of porting the module where it was used.

Challenging part of Project

It is very difficult to deal with paths on different operating systems.The issue is around macOS/Windows/Linux. The
first two OS handle unicode paths comfortably on Python 2 and 3 but not completely on macOS Mojave because its
filesystem encoding is APFS. Linux paths are bytes and os.listdir is broken on Python 2. As a result you can only sanely
handle Linux paths as bytes on Python 2. But on Python 3 path seems to be corrected as unicode on Linux.

For more details visit here :

• https://vstinner.github.io/painful-history-python-filesystem-encoding.html

• jaraco/path.py#130

We came with various Solution:

• To use pathlib which generally handle paths correctly across platforms. And for backports we use pathlib 2. But
this solution also fails because pathlib 2 does not work as expected wrt unicode vs bytes. And os.listdir also
doesn’t work properly.

• To use path.py which handles the paths across all the platforms even on macOS Mojave .

• Use bytes on linux and python 3 and unicode everywhere.

We choose the third solution because it is most fundamental and simple and easy to use.

Project was tracked in this ticket nexB/scancode-toolkit#295

Project link : Port Scancode to Python 3

My contribution : List of Commits

6.1. Contribute 165

https://github.com/pombredanne
https://vstinner.github.io/painful-history-python-filesystem-encoding.html
https://github.com/jaraco/path.py/issues/130
https://pypi.org/project/path.py/
https://github.com/nexB/scancode-toolkit/issues/295
https://summerofcode.withgoogle.com/organizations/6118953540124672/
https://github.com/nexB/scancode-toolkit/commits?author=Abhishek-Dev09

ScanCode-Toolkit

Note : Please give your feedback here

Outcome

Now we have liftoff on Python 3 . We are able to run basic scans without errors on develop branch. You check it by
running scancode -clipeu samples/ --json-pp - -n4 .

At last I would like to thanks my Mentor @pombredanne aka Philippe Ombredanne . He has helped lot in completing
this project. He is very supportive and responsive. I have learned a lot from him. By his encouragement and motivation,
I am very improving day by day, building and developing my skills. I have completed all the tasks that were in the scope
of this GSoC project.

6.1.7 Google Summer of Code 2021 Final report

Organisation - AboutCode

Akanksha Garg <akanksha.garg2k@gmail.com>

GITHUB

Project: Detect Unknown Licenses and Indirect License References in Scancode

ScanCode-toolkit

Project Link

Proposal

Description

The main motive of this project was to improve license detection of unknown licenses and follow references to indirect
license references in Scancode-TK

Improvement in the License Data Model Definition

Unknown Licenses are the ones which are matched to a license rule tagged with ‘unknown’ license key. Since these are
some of the ‘special’ licenses , reporting them with special attributes will provide more clarification. Now unknown
licenses are tagged with a new flag “is_unknown” to identify them beyond just the naming convention of having
“unknown” as part of their name.

Rules that match at least one unknown license have a flag “has_unknown” set in the returned match results.

nexB/scancode-toolkit#2548

6.1. Contribute 166

https://github.com/nexB/scancode-toolkit/issues/295
https://github.com/pombredanne
mailto:akanksha.garg2k@gmail.com
https://github.com/akugarg
https://github.com/nexB/scancode-toolkit
https://summerofcode.withgoogle.com/archive/2021/projects/6229596998991872
https://docs.google.com/document/d/1Dp0Hgk38RIMwITTiS-kqfikpkHRi2rjtkotA9CLw8j0/edit?usp=sharing
https://github.com/nexB/scancode-toolkit/pull/2548

ScanCode-Toolkit

Reporting known and Unknown licenses separately

We considered having a separate section for of scan results to report ‘unknown licenses’ separately and not mixed with
main license detection results. But after implementing a separate section for unknown ones ,it doesn’t seem to be good
idea to have currently.

nexB/scancode-toolkit#2578

Follow License References to another file

Some license references such as “see license in file LICENSE.txt” e.g. mentions to look for license details in an-
other file are reported as unknown license references and we could instead follow the referenced file to find what was
detected there. The approach was to use already contained attribute refrenced_filenames in license RULE data
files. Since this was a process_codebase step in scan plugin , it was needed that our API function should return
refrenced_filenames to keep track of these files corresponding to licenses detected. This was tracked in -

nexB/scancode-toolkit#2632

The `process_codebase` step is tracked in -

nexB/scancode-toolkit#2616

Improve license detection of Unknown Licenses

The approach was to use index of n-grams for detecting unknowns besides having our actual detection of “unknown”
license rules. Firstly matches were filtered after running our normal procedure of license detection and the remaining
spans are run through a automaton index containing n-grams from all regular license texts and rules. This is tracked in
-

nexB/scancode-toolkit#2592

Addition of some new Licenses

There were some licenses that were not present in Scancode-toolkit as for now. They have been added now.

nexB/scancode-toolkit#2625

Pre-GSoC

Contributions
• nexB/scancode-toolkit#2423

• nexB/scancode-toolkit#2473

• nexB/scancode-toolkit#2464

• nexB/scancode-toolkit#2381

I’ve had a wonderful summer during these 10 weeks journey and have learned plenty of things. I am thankful to
Google and Aboutcode for giving me this opportunity to work with such an amazing community. I am fortunate to
have mentors Philippe Ombredanne and Ayan Sinha Mahapatra who helped me a lot throughout my GSoC project and
provided constant support.

6.1. Contribute 167

https://github.com/nexB/scancode-toolkit/pull/2578
https://github.com/nexB/scancode-toolkit/pull/2632
https://github.com/nexB/scancode-toolkit/pull/2616
https://github.com/nexB/scancode-toolkit/pull/2592
https://github.com/nexB/scancode-toolkit/pull/2625
https://github.com/nexB/scancode-toolkit/pull/2423
https://github.com/nexB/scancode-toolkit/pull/2473
https://github.com/nexB/scancode-toolkit/pull/2464
https://github.com/nexB/scancode-toolkit/pull/2381
https://github.com/pombredanne
https://github.com/AyanSinhaMahapatra

CHAPTER

SEVEN

PLUGINS DOCUMENTATION

7.1 Plugins

7.1.1 Plugin Architecture

Abstract:

The purpose of plugins is to create a decoupled architecture such that ScanCode can support extensibility at different
stages of a scan. These stages are:

• Pre-scan: Before starting the scan proper, such as plugins to handle extraction of different archive types or
instructions on how to handle certain types of files, or to collect filetypes. These plugins process a whole codebase
at once.

• Scan proper: plugins to scan a file e.g. collect data and evidece from the files. These plugins process one file at
a teim and can do a whole codebase pass once all files are scanned.

• Post-scan: After the scan, e.g plugins for summarization and other aggregated operation once all scans are com-
pleted. These plugins process a whole codebase at once.

• Output and output filter: plugins for output creation and filtering such as formatting or converting output to other
formats (such as json, spdx, csv, yaml). These plugins process a whole codebase at once.

Description:

This project aims at making scancode a “pluggable” system, where new functionalities can be added to scancode at
runtime as “plugins”. These plugins can be hooked into scancode using some predefined hooks. I would consider
pluggy as the way to go for a plugin management system.

Why pluggy?

Pluggy is well documented and maintained regularly, and has proved its worth in projects such as pytest. Pluggy relies
on hook specifications and hook implementations (callbacks) instead of the conventional subclassing approach which
may encourage tight-coupling in the overlying framework. Basically a hook specification contains method signatures
(no code), these are defined by the application. A hook implementation contains definitions for methods declared in
the corresponding hook specification implemented by a plugin.

As mentioned in the abstract, the plugin architecture will have 3 hook specifications (can be increased if required)

168

ScanCode-Toolkit

1. Pre - scan hook

• Structure -

prescan_hookspec = HookspecMarker('prescan')

@prescan_hookspec
def extract_archive(args):

Here the path of the archive to be extracted will be passed as an argument to the extract_archive function which will
be called before scan, at the time of extraction. This will process the archive type and extract the contents accordingly.
This functionality can be further extended by calling this function if any archive is found inside the scanning tree.

2. Scan proper hook

• Structure

scanproper_hookspec = HookspecMarker('scanproper')

@scanproper_hookspec
def add_cmdline_option(args):

This function will be called before starting the scan, without any arguments, it will return a dict containing the click
extension details and possibly some help text. If this option is called by the user then the call will be rerouted to the
callback defined by the click extension. For instance say a plugin implements functionality to add regex as a valid
ignore pattern, then this function will return a dict as:

{
'name': '--ignore-regex',
'options' : {

'default': None,
'multiple': True,
'metavar': <pattern>

},
'help': 'Ignore files matching regex <pattern>'
'call_after': 'is_ignored'

}

According to the above dict, if the option –ignore-regex is supplied, this function will be called after the is_ignored
function and the data returned by the is_ignored function will be supplied to this function as its argument(s). So if the
program flow was:

scancode() scan() resource_paths() is_ignored()

It will now be edited to

scancode() scan() resource_paths() is_ignored() add_cmdline_option()

Options such as call_after, call_before, call_first, call_last can be defined to determine when the function is to be
executed.

@scanproper_hookspec
def dependency_scan(args):

7.1. Plugins 169

ScanCode-Toolkit

This function will be called before starting the scan without any arguments, it will return a list of file types or attributes
which if encountered in the scanned tree, will call this function with the path to the file as an argument. This function
can do some extra processing on those files and return the data to be processed as a dependency for the normal scanning
process. E.g. It can return a list such as:

['debian/copyright']

Whenever a file matches this pattern, this function will be called and the data returned will be supplied to the main
scancode function.

3. Post - scan hook

• Structure -

postscan_hookspec = HookspecMarker('postscan')

@postscan_hookspec
def format_output(args):

This function will be called after a scan is finished. It will be supplied with path to the ABC data generated from the
scan, path to the root of the scanned code and a path where the output is expected to be stored. The function will store
the processed data in the output path supplied. This can be used to convert output to other formats such as CSV, SPDX,
JSON, etc.

@postscan_hookspec
def summarize_output(args):

This function will be called after a scan is finished. It will be supplied the data to be reported to the user as well as a
path to the root of the scanned node. The data returned can then be reported to the user. This can be used to summarize
output, maybe encapsulate the data to be reported or omit similar file metadata or even classify files such as tests, code
proper, licenses, readme, configs, build scripts etc.

• Identifying or configuring plugins
For python plugins, pluggy supports loading modules from setuptools entrypoints, E.g.

entry_points = {
'scancode_plugins': [

'name_of_plugin = ignore_regex',
]

}

This plugin can be loaded using the PluginManager class’s load_setuptools_entrypoints(‘scancode_plugins’) method
which will return a list of loaded plugins.

For non python plugins, all such plugins will be stored in a common directory and each of these plugins will have a
manifest configuration in YAML format. This directory will be scanned at startup for plugins. After parsing the config
file of a plugin, the data will be supplied to the plugin manager as if it were supplied using setuptools entrypoints.

In case of non python plugins, the plugin executables will be spawned in their own processes and according to their
config data, they will be passed arguments and would return data as necessary. In addition to this, the desired hook
function can be called from a non python plugin using certain arguments, which again can be mapped in the config file.

Sample config file for a ignore_regex plugin calling scanproper hook would be:

7.1. Plugins 170

ScanCode-Toolkit

name: ignore_regex
hook: scanproper
hookfunctions:
add_cmdline_option: '-aco'
dependency_scan: '-dc'

data:
add_cmdline_option':
- name: '--ignore-regex'
- options:

- default: None
- multiple: True
- metavar: <pattern>

- help: 'Ignore files matching regex <pattern>'
- call_after: 'is_ignored'

Existing solutions:

An alternate solution to a “pluggable” system would be the more conventional approach of adding functionalities
directly to the core codebase, which removes the abstraction layer provided by a plugin management and hook calling
system.

7.1.2 License Policy Plugin

This plugin allows the user to apply policy details to a scancode scan, depending on which licenses are detected in
a particular file. If a license specified in the Policy file is detected by scancode, this plugin will apply that policy
information to the Resource as a new attribute: license_policy.

Policy File Specification

The Policy file is a YAML (.yml) document with the following structure:

license_policies:
- license_key: mit

label: Approved License
color_code: '#00800'
icon: icon-ok-circle

- license_key: agpl-3.0
label: Approved License
color_code: '#008000'
icon: icon-ok-circle

- license_key: broadcom-commercial
label: Restricted License
color_code: '#FFcc33'
icon: icon-warning-sign

The only required key is license_key, which represents the ScanCode license key to match against the detected
licenses in the scan results.

In the above example, a descriptive label is added along with a color code and CSS id name for potential visual display.

7.1. Plugins 171

ScanCode-Toolkit

Using the Plugin

To apply License Policies during a ScanCode scan, specify the --license-policy option.

For example, use the following command to run a File Info and License scan on /path/to/codebase/, using a License
Policy file found at ~/path/to/policy-file.yml:

$ scancode -clipeu /path/to/codebase/ --license-policy ~/path/to/policy-file.yml --json-
→˓pp
~/path/to/scan-output.json

Example Output

Here is an example of the ScanCode output after running --license-policy:

{
"path": "samples/zlib/deflate.c",
"type": "file",
"detected_license_expression": "zlib",
"detected_license_expression_spdx": "Zlib",
"license_detections": [
{
"license-expression": "zlib",
...
...
...

}
],
"license_policy": {
"license_key": "zlib",
"label": "Approved License",
"color_code": "#00800",
"icon": "icon-ok-circle"

},
"scan_errors": []
}

7.1.3 Plugin Tutorials

• Add A Post-Scan Plugin

7.1.4 CPP Includes Plugin

This plugin allows users to collect the #includes statements in C/C++ files.

7.1. Plugins 172

ScanCode-Toolkit

Using the Plugin

User needs to use the --cpp-includes option.

The following command will collect the #includes statements from C/C++ files.:

$ scancode --cpp-includes /path/to/codebase/ --json-pp ~/path/to/scan-output.json

Example Output

Here is an sample output:

{
"path": "zlib_deflate/deflate.c",
"type": "file",
"cpp_includes": [
"<linux/module.h",
"<linux/zutil.h",
"\"defutil.h"

],
"scan_errors": []

},
{
"path": "zlib_deflate/deflate_syms.c",
"type": "file",
"cpp_includes": [
"<linux/module.h",
"<linux/init.h",
"<linux/zlib.h"

],
"scan_errors": []

}

7.1.5 LKMClue Plugin

This plugin allows users to collect LKM module clues and type indicating a possible Linux Kernel Module.

Using the Plugin

User needs to use the --lkmclue option.

The following command will collect the LKM module clues from the input location:

$ scancode --lkmclue /path/to/codebase/ --json-pp ~/path/to/scan-output.json

7.1. Plugins 173

ScanCode-Toolkit

Example Output

Here is an sample output:

{
"path": "zlib_deflate/deflate.c",
"type": "file",
"lkm_clue": {
"lkm-header-include": [
"include <linux/module.h>"

]
},
"scan_errors": []

},
{
"path": "zlib_deflate/deflate_syms.c",
"type": "file",
"lkm_clue": {
"lkm-header-include": [
"include <linux/module.h>"

],
"lkm-license": [
"GPL"

]
},
"scan_errors": []

}

7.1.6 Dwarf Plugin

This plugin allows users to collect source code path/name from compilation units found in ELF DWARFs.

Specification

This plugin will only work with non-stripped ELFs with debug symbols.

Using the Plugin

User needs to use the --dwarf option.

The following command will collect all the dwarf references found in non-stripped ELFs:

$ scancode --dwarf /path/to/codebase/ --json-pp ~/path/to/scan-output.json

7.1. Plugins 174

ScanCode-Toolkit

Example Output

Here is an sample output:

{
"path": "project/stripped.ELF",
"type": "file",
"dwarf_source_path": [],
"scan_errors": []

},
{
"path": "project/non-stripped.ELF",
"type": "file",
"dwarf_source_path": ['/tmp/test.c],
"scan_errors": []

}

7.1. Plugins 175

CHAPTER

EIGHT

MISCELLANEOUS DOCUMENTS

8.1 Miscellaneous

8.1.1 FAQ

Why ScanCode?

We could not find an existing tool (open source or commercial) meeting our needs:

• usable from the command line or as library

• running on Linux, Mac and Windows

• written in a higher level language such as Python

• easy to extend and evolve

• accurately detecting most licenses and copyrights

How is ScanCode different from Debian licensecheck?

At a high level, ScanCode detects more licenses and copyrights than licensecheck does, reporting more details about
the matches. It is likely slower.

In more details: ScanCode is a Python app using a data-driven approach (as opposed to carefully crafted regex like
licensecheck uses):

• for license scan, the detection is based on a (large) number of license full texts (~2100) and license notices,
mentions and variants (~32,000) and is data- driven as opposed to regex-driven. It detects and reports exactly
where license text is found in a file. Just throw in more license texts to improve the detection.

• for copyright scan, the approach is natural language parsing grammar; it has a few thousand tests.

• licenses and copyrights are detected in texts and binaries

• licenses and copyrights are also detected in structured package manifests

Licensecheck (available here for reference: https://metacpan.org/pod/App::Licensecheck) is a Perl script using hand-
crafted regex patterns to find typical copyright statements and about 50 common licenses. There are about 50 license
detection tests.

A quick test (in July 2015, before a major refactoring, but for this may still be still valid) shows several things that are
not detected by licensecheck that are detected by ScanCode.

176

https://metacpan.org/pod/App::Licensecheck

ScanCode-Toolkit

How can I integrate ScanCode in my application?

More specifically, does this tool provide an API which can be used by us for the integration with my system to trigger
the license check and to use the result?

In terms of API, there are two stable entry points:

#. The JSON output when you use it as a command line tool from any language or when you call the scan-
code.cli.scancode function from a Python script.

#. Otherwise the scancode.cli.api module provides a simple function if you are only interested in calling a certain
service on a given file (such as license detection or copyright detection)

Can I install ScanCode in a Unicode path?

Yes and this is fully supported and tested. See https://github.com/nexB/scancode-toolkit/issues/867 for a previous bug
that was preventing this.

There was a bug in virtualenv https://github.com/pypa/virtualenv/issues/457 that is now fixed and has been extensively
tested for ScanCode.

The line numbers for a copyright found in a binary are weird. What do they mean?

When scanning binaries, the line numbers are just a relative indication of where a detection was found: there is no such
thing as lines in a binary. The numbers reported are based on the strings extracted from the binaries, typically broken
as new lines with each NULL character.

8.1.2 Support

Documentation

The ScanCode toolkit documentation lives at https://scancode-toolkit.readthedocs.io/.

Issue Tracker

Post issues you are having and bugs as GitHub tickets

Discussions

If you want to ask questions or anything else that you think are not bugs/new features, open a discussion

Join the conversation

Join our general chatroom to chat with aboutcode community members, and if you want to talk to users and developers
of ScanCode Toolkit, use scancode room

8.1. Miscellaneous 177

https://github.com/nexB/scancode-toolkit/issues/867
https://github.com/pypa/virtualenv/issues/457
https://scancode-toolkit.readthedocs.io/
https://github.com/nexB/scancode-toolkit/issues
https://github.com/nexB/scancode-toolkit/discussions
https://matrix.to/#/
https://matrix.to/#/

ScanCode-Toolkit

8.1.3 Runtime Performance Reports

These are reports of runtimes for real life scans:

2015-09-03 by @rrjohnston
• On Ubuntu 12.04 x86_64 Python 2.7.3 and ScanCode Version 1.3.1

• Specs: 40 threads (2 processors, 10 cores each, with hyperthreading) 3.1 GHz 128GB RAM 8TB controller
RAID5

• scanned 195676 files in about 16.7 hours or about 3.25 file per second (using defaults licenses and copyrights)

• notes: this version of ScanCode runs on a single thread so it does not make good use of extra processing power.

8.1.4 Versioning approach

ScanCode is composed of code and data (mostly license data used for license detection). In the past, we have tried
using calver for code versioning to also convey that the data contained in ScanCode was updated but it proved to be not
as clear and as effective as planned so we are switching back to semver which is simpler and overall more useful for
users. We also want to provide hints about JSON output data format changes.

Therefore, this is our versioning approach starting with version 30.0.0:

• ScanCode releases are versioned using semver as documented at https://semver.org using major.minor.patch ver-
sioning.

• Significant changes to the data (license or copyright detection) is considered a major version change even if there
are no code changes. The rationale is that in our case the data has the same impact as the code. Using outdated
data is like using old code and means that several licenses may not be detected correctly. Any data change triggers
at least a minor version change.

• We will signal separately to users with warnings messages when ScanCode needs to be upgraded because its
data and/or code are out of date.

In addition to the main code version, we also maintain a secondary output data format version using also semver with
two segments. The versioning approach is adapted for data this way:

• The first segment –the major version– is incremented when data attributes that are removed, renamed, changed
or moved (but not reordered) in the JSON output. Reordering the attributes of a JSON object is not considered
as a change and does not trigger a version change.

• The second segment –the minor version– of the output format is incremented for an addition of attributes to the
JSON output.

• We store the output format version string in the JSON output object as the first attribute and display that also in
the help.

• This output format versioning applies only to the JSON, pretty-printed JSON, YAML and JSON lines formats.
It does not apply to CSV and any other formats. For these other formats there is no versioning and guaranteed
format stability (or there may be some other rationale and convention for versioning like for SPDX).

• The output format version is incremented by when a new ScanCode tagged release is published

• We document in the CHANGELOG the output format changes in any new format version.

• For any format version changes, we will provide a documentation on the format and its updates using JSON ex-
amples and a comprehensive and updated data dictionary. See https://github.com/nexB/scancode-toolkit/issues/
2008 for details.

8.1. Miscellaneous 178

https://semver.org
https://github.com/nexB/scancode-toolkit/issues/2008
https://github.com/nexB/scancode-toolkit/issues/2008

CHAPTER

NINE

REFERENCE DOCUMENTS

Reference documents provide reference pages for technical reference information about ScanCode Toolkit, including
how it works and supported features.

9.1 Reference Docs

9.1.1 Overview

How does ScanCode detect licenses?

For license detection, ScanCode uses a (large) number of license texts and license detection ‘rules’ that are compiled
in a search index. When scanning, the text of the target file is extracted and used to query the license search index and
find license matches.

For copyright detection, ScanCode uses a grammar that defines the most common and less common forms of copy-
right statements. When scanning, the target file text is extracted and ‘parsed’ with this grammar to extract copyright
statements.

ScanCode-Toolkit performs the scan on a codebase in the following steps :

1. Collect an inventory of the code files and classify the code using file types,

2. Extract files from any archive using a general purpose extractor

3. Extract texts from binary files if needed

4. Use an extensible rules engine to detect open source license text and notices

5. Use a specialized parser to capture copyright statements

6. Identify packaged code and collect metadata from packages

7. Report the results in the formats of your choice (JSON, CSV, etc.) for integration with other tools

Scan results are provided in various formats:

• a JSON file simple or pretty-printed,

• SPDX tag value or XML, RDF formats,

• CSV,

• a simple unformatted HTML file that can be opened in browser or as a spreadsheet.

For each scanned file, the result contains:

• its location in the codebase,

179

ScanCode-Toolkit

• the detected licenses and copyright statements,

• the start and end line numbers identifying where the license or copyright was found in the scanned file, and

• reference information for the detected license.

For archive extraction, ScanCode uses a combination of Python modules, 7zip and libarchive/bsdtar to detect archive
types and extract these recursively.

Several other utility modules are used such as libmagic for file and mime type detection.

9.1.2 License Detection Updates

References:

• Issue

• Pull Request

• A presentation on this

The Problem:

The goal was to reduce false-positives in scancode license detection results, especially unknown-license-reference de-
tections and approximate detections reporting best-guess license_expressions. To tackle this the following solution
elements were discussed and implemented:

1. Reporting the primary, declared license in a scan summary record

2. tagging mandatory portions in rules #2773

3. Adding license detections by combine multiple license matches #2961

4. Integrating the existing scancode-analyzer tool into SCTK to combine multiple matches based on statistics and
heuristics #2961

5. Reporting license clues when the matched license rule data is not sufficient to create a LicenseDetection #2961

6. web app for efficient scan and review of a single license to ease reporting license detection issues
nexB/scancode.io#450

7. also apply LicenseDetection to package license detections #2961

8. rename resource and package license fields #2961

Some other elements are still WIP, see issue #3300 for more details on this.

What is a LicenseDetection?

A detection which can have one or multiple LicenseMatch in them, and creates a License Expression that we finally
report.

Properties:

• A file can have multiple LicenseDetections (separated by non-legalese lines)

• This can be from a file directly or a package.

• We should be mostly certain of a proper license detection to report a LicenseDetection, i.e. we should have
ideally gotten rid of false positives and wrong license matches, or improved them.

• One LicenseDetection can have matches from different files, in case of local license references.

9.1. Reference Docs 180

https://github.com/nexB/scancode-toolkit/issues/2878
https://github.com/nexB/scancode-toolkit/pull/2961
https://github.com/nexB/scancode-toolkit/issues/2878#issuecomment-1079639973
https://github.com/nexB/scancode-toolkit/pull/2773
https://github.com/nexB/scancode-toolkit/pull/2961
https://github.com/nexB/scancode-toolkit/pull/2961
https://github.com/nexB/scancode-toolkit/pull/2961
https://github.com/nexB/scancode.io/pull/450
https://github.com/nexB/scancode-toolkit/pull/2961
https://github.com/nexB/scancode-toolkit/pull/2961
https://github.com/nexB/scancode-toolkit/issues/3300

ScanCode-Toolkit

• We don’t remove any detection matches, but we add more matches only to rectify and correct the li-
cense_expression.

Also there are two levels of reporting license detections:

• File/package level License Detections

• Codebase level unique License Detections (summarized from the file/package level detections)

Examples

A License Intro example:

Consider the following text:

/***
* Copyright (c) 2019 Red Hat, Inc.
*
* This program and the accompanying materials are made
* available under the terms of the Eclipse Public License 2.0
* which is available at https://www.eclipse.org/legal/epl-2.0/
*
* SPDX-License-Identifier: EPL-2.0
**/

The text:

"This program and the accompanying materials are made\n* available under the terms of the
→˓"

is detected as unknown-license-reference with is_license_intro as True, and has several epl-2.0 detections
after that.

This can be considered as a single License Detection with its detected license-expression as epl-2.0. The matches
of this license detection would also have the matches with the unknown-license-reference, but they will not be
present in the final license_expression.

A License Reference example:

Consider the two following files:

file.py:

This is free software. See COPYING for details.

COPYING:

license: apache 2.0

Here there will be a unknown-license-reference detected in file.py and this actually references the license
detected in COPYING which is apache-2.0.

This can be considered a single LicenseDetection with both the license matches from both files, and a concluded
license_expression apache-2.0 instead of the unknown-license-reference.

9.1. Reference Docs 181

ScanCode-Toolkit

Chnagelog Summary

• There is a new license_detections codebase level attribute with all the unique license detections in the whole
scan, both in resources and packages.

• The data structure of the JSON output has changed for licenses at resource level, also with new attribute names,
licenses -> license_detections and license_expressions -> detected_license_expression also
with a SPDX version of the same. As license detection attributes we have: license_expression, identifier
and matches. We also have a detection_log (present optionally if the --license-diagnostics option is
enabled).

• There are license_detections now reported at packages, and the data structure of li-
cense attributes in package_data and the codebase level packages has been also updated:
license_expression -> declared_license_expression, also with it’s SPDX version,
declared_license -> extracted_license_statement, and also secondary license detections data
in: other_license_expression and other_license_detections.

• Instead of reporting one match for each license key of a matched license expression, we now report one single
match for each matched license expression, avoiding data duplication. Inside each match, we also list each match
and matched rule attributes directly to avoiding nesting.

• License and Rule reference data is not reported at match level in license detections and instead is reported at
codebase-level with a new CLI option --license-references as new attributes: license_references and
license_rule_references that list unique detected license and license rules with their details.

Change in License Data format: Resource

The data structure of the JSON output has changed for licenses at file level:

• The licenses attribute is deleted.

• A new license_detections attribute contains license detections in that file. This object has three attributes:
license_expression, detection_log and matches. matches is a list of license matches and is roughly the
same as licenses in the previous version with additional structure changes detailed below.

• A new attribute license_clues contains license matches with the same data structure as the matches attribute
in license_detections. This contains license matches that are mere clues and were not considered to be a
proper conclusive license detection.

• The license_expressions list of license expressions is deleted and replaced by a
detected_license_expression single expression. Similarly spdx_license_expressions was re-
moved and replaced by detected_license_expression_spdx.

See the before/after results for a file to compare the changes.

Before:

{
"licenses": [
{
"key": "apache-2.0",
"score": 100.0,
"name": "Apache License 2.0",
"short_name": "Apache 2.0",
"category": "Permissive",
"is_exception": false,
"is_unknown": false,
"owner": "Apache Software Foundation",

(continues on next page)

9.1. Reference Docs 182

ScanCode-Toolkit

(continued from previous page)

"homepage_url": "http://www.apache.org/licenses/",
"text_url": "http://www.apache.org/licenses/LICENSE-2.0",
"reference_url": "https://scancode-licensedb.aboutcode.org/apache-2.0",
"scancode_text_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/licenses/apache-2.0.LICENSE",
"scancode_data_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/licenses/apache-2.0.yml",
"spdx_license_key": "Apache-2.0",
"spdx_url": "https://spdx.org/licenses/Apache-2.0",
"start_line": 1,
"end_line": 1,
"matched_rule": {
"identifier": "apache-2.0_65.RULE",
"license_expression": "apache-2.0",
"licenses": [
"apache-2.0"

],
"referenced_filenames": [],
"is_license_text": false,
"is_license_notice": false,
"is_license_reference": false,
"is_license_tag": true,
"is_license_intro": false,
"has_unknown": false,
"matcher": "1-hash",
"rule_length": 4,
"matched_length": 4,
"match_coverage": 100.0,
"rule_relevance": 100,
"is_builtin": true

},
"matched_text": "License: Apache-2.0"

}
],
"license_expressions": [
"apache-2.0"

]
}

After:

"detected_license_expression": "apache-2.0",
"detected_license_expression_spdx": "Apache-2.0",
"license_detections": [
{
"license_expression": "apache-2.0",
"matches": [
{
"score": 100.0,
"start_line": 1,
"end_line": 1,
"matched_length": 4,

(continues on next page)

9.1. Reference Docs 183

ScanCode-Toolkit

(continued from previous page)

"match_coverage": 100.0,
"matcher": "1-hash",
"license_expression": "apache-2.0",
"rule_identifier": "apache-2.0_65.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/apache-2.0_65.RULE",
"matched_text": "license: apache 2.0"

}
],
"detection_log": [],
"identifier": "apache_2_0-ec759ae0-ea5a-f138-793e-388520e080c0"

}
],
"license_clues": [],

Change in License Data format: Package

License data attributes has also changed in packages:

Before:

{
"type": "cocoapods",
"namespace": null,
"name": "LoadingShimmer",
"version": "1.0.3",
"license_expression": "mit AND unknown",
"declared_license": ":type = MIT, :file = LICENSE",
"datasource_id": "cocoapods_podspec",
"purl": "pkg:cocoapods/LoadingShimmer@1.0.3"

}

After:

"declared_license_expression": "mit",
"declared_license_expression_spdx": "MIT",
"license_detections": [
{
"license_expression": "mit",
"matches": [
{
"score": 100.0,
"start_line": 1,
"end_line": 1,
"matched_length": 4,
"match_coverage": 100.0,
"matcher": "1-hash",
"license_expression": "mit",
"rule_identifier": "mit_in_manifest.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

(continues on next page)

9.1. Reference Docs 184

ScanCode-Toolkit

(continued from previous page)

→˓licensedcode/data/rules/mit_in_manifest.RULE",
"matched_text": ":type = MIT, :file = LICENSE"

}
],
"identifier": "mit-74f1df5b-f94d-2423-6bb8-3e4d809c26a5"

}
],
"other_license_expression": null,
"other_license_expression_spdx": null,
"other_license_detections": [],
"extracted_license_statement": ":type = MIT, :file = LICENSE",

Previously in package data only the license_expression was present and it was very hard to debug license detections.
Now there’s a license_detections field with the detections, same as the resource license_detections, with
additional declared_license_expression and other_license_expression with their SPDX counterparts. The
declared_license field also has been renamed to extracted_license_statement.

Codebase level Unique License Detection

We now have a new codebase level attribute license_detections which has Unique License Detection across
the codebase, in both packages and resources. They are linked by a common attribute identifier containing the
license_expression and a UUID generated from the match content. The match level data is only present at the
resource level if needed, to look at details.

New codebase level attribute:

{
"license_detections": [
{
"identifier": "epl_1_0-583490fb-0b3a-f445-a1b9-1b96423b9ec3",
"license_expression": "epl-1.0",
"detection_count": 2,
"detection_log": []

}
]

}

For the corresponding resource level license detection:

"license_detections": [
{
"license_expression": "epl-1.0",
"matches": [
{
"score": 99.34,
"start_line": 12,
"end_line": 25,
"matched_length": 150,
"match_coverage": 99.34,
"matcher": "3-seq",
"license_expression": "epl-1.0",
"rule_identifier": "epl-1.0_3.RULE",

(continues on next page)

9.1. Reference Docs 185

ScanCode-Toolkit

(continued from previous page)

"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/epl-1.0_3.RULE",
},
{
"score": 100.0,
"start_line": 17,
"end_line": 17,
"matched_length": 8,
"match_coverage": 100.0,
"matcher": "2-aho",
"license_expression": "epl-1.0",
"rule_identifier": "epl-1.0_7.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/epl-1.0_7.RULE",
}

],
"detection_log": [],
"identifier": "epl_1_0-583490fb-0b3a-f445-a1b9-1b96423b9ec3"

}
]

LicenseMatch Result Data

LicenseMatch data was based on a license key instead of being based on a license-expression.

So if there is a gpl-2.0 AND patent-disclaimer license expression detected from a single LicenseMatch,
there were two entries in the licenses list for that resource, one for each license key, (here gpl-2.0 and
patent-disclaimer respectively). This repeats the match details as these two entries have the same details except
the license key.

We should only add one entry per match (and therefore per rule) and here the primary attribute should be the
license-expression, rather than the license-key.

We also used to create a mapping inside a mapping in these license details to refer to the license rule (and there are
other inconsistencies in how we report here). We are now just reporting a flat mapping here, and all the rule details are
also not present in the license match, and only available as an optional reference.

See this before/after comparision to see how the license data in results has evolved.

Before:

"licenses": [
{
"key": "gpl-2.0",
"score": 100.0,
"name": "GNU General Public License 2.0",
"short_name": "GPL 2.0",
"category": "Copyleft",
"is_exception": false,
"is_unknown": false,
"owner": "Free Software Foundation (FSF)",

(continues on next page)

9.1. Reference Docs 186

ScanCode-Toolkit

(continued from previous page)

"homepage_url": "http://www.gnu.org/licenses/gpl-2.0.html",
"text_url": "http://www.gnu.org/licenses/gpl-2.0.txt",
"reference_url": "https://scancode-licensedb.aboutcode.org/gpl-2.0",
"scancode_text_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/licenses/gpl-2.0.LICENSE",
"scancode_data_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/licenses/gpl-2.0.yml",
"spdx_license_key": "GPL-2.0-only",
"spdx_url": "https://spdx.org/licenses/GPL-2.0-only",
"start_line": 4,
"end_line": 30,
"matched_rule": {
"identifier": "gpl-2.0_and_patent-disclaimer_3.RULE",
"license_expression": "gpl-2.0 AND patent-disclaimer",
"licenses": [
"gpl-2.0",
"patent-disclaimer"

],
"referenced_filenames": [],
"is_license_text": false,
"is_license_notice": true,
"is_license_reference": false,
"is_license_tag": false,
"is_license_intro": false,
"has_unknown": false,
"matcher": "2-aho",
"rule_length": 185,
"matched_length": 185,
"match_coverage": 100.0,
"rule_relevance": 100

}
},
{
"key": "patent-disclaimer",
"score": 100.0,
"name": "Generic patent disclaimer",
"short_name": "Generic patent disclaimer",
"category": "Permissive",
"is_exception": false,
"is_unknown": false,
"owner": "Unspecified",
"homepage_url": null,
"text_url": "",
"reference_url": "https://scancode-licensedb.aboutcode.org/patent-disclaimer",
"scancode_text_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/licenses/patent-disclaimer.LICENSE",
"scancode_data_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/licenses/patent-disclaimer.yml",
"spdx_license_key": "LicenseRef-scancode-patent-disclaimer",
"spdx_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/

→˓data/licenses/patent-disclaimer.LICENSE",
"start_line": 4,

(continues on next page)

9.1. Reference Docs 187

ScanCode-Toolkit

(continued from previous page)

"end_line": 30,
"matched_rule": {
"identifier": "gpl-2.0_and_patent-disclaimer_3.RULE",
"license_expression": "gpl-2.0 AND patent-disclaimer",
"licenses": [
"gpl-2.0",
"patent-disclaimer"

],
"referenced_filenames": [],
"is_license_text": false,
"is_license_notice": true,
"is_license_reference": false,
"is_license_tag": false,
"is_license_intro": false,
"has_unknown": false,
"matcher": "2-aho",
"rule_length": 185,
"matched_length": 185,
"match_coverage": 100.0,
"rule_relevance": 100

}
}

],
"license_expressions": [
"gpl-2.0 AND patent-disclaimer"

],

After:

"license_detections": [
{
"license_expression": "gpl-2.0 AND patent-disclaimer",
"matches": [
{
"score": 100.0,
"start_line": 4,
"end_line": 30,
"matched_length": 185,
"match_coverage": 100.0,
"matcher": "2-aho",
"license_expression": "gpl-2.0 AND patent-disclaimer",
"rule_identifier": "gpl-2.0_and_patent-disclaimer_3.RULE",
"rule_relevance": 100,
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/gpl-2.0_and_patent-disclaimer_3.RULE"
}

],
"identifier": "gpl_2_0_and_patent_disclaimer-3bb2602f-86f5-b9da-9bf5-b52e6920c8d1"

}
],

9.1. Reference Docs 188

ScanCode-Toolkit

Only reference License related data

Before 32.x all license related data was inlined in each match, and this repeats a lot of information. This repeatation
exists in three levels:

• License-level Data (a license-key)

• Rule-level Data (a license rule)

• LicenseDetection Data (a license detection)

License Data

This is referencing data related to whole licenses, references by their license key.

Example: apache-2.0

Other attributes are it’s full test, links to origin, licenseDB, spdx, osi etc.

Rule Data

This is referencing data related to a LicenseDB entry. I.e. the identifier is a RULE or a LICENSE file.

Example: apache-2.0_2.RULE

Other attributes are it’s license-expression, the boolean fields, length, relevance etc.

CLI option

This is now default with the CLI option --license, which references from the match License-level Data and
LicenseDB-level Data, and removes the actual data from the matches, and adds them to two top-level lists.

Comparision: Before/After license references

To compare how the license output data changes between when license references are not collected vs when they are
collected (which is default from version 32.x), check out the before/after comparision below.

Before:

{
"files": [
{
"detected_license_expression": "apache-2.0",
"detected_license_expression_spdx": "Apache-2.0",
"license_detections": [
{
"license_expression": "apache-2.0",
"detection_log": [
"not-combined"

],
"matches": [
{
"score": 100.0,

(continues on next page)

9.1. Reference Docs 189

ScanCode-Toolkit

(continued from previous page)

"start_line": 1,
"end_line": 1,
"matched_length": 4,
"match_coverage": 100.0,
"matcher": "1-hash",
"license_expression": "apache-2.0",
"rule_identifier": "apache-2.0_65.RULE",
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/apache-2.0_65.RULE",
"referenced_filenames": [],
"is_license_text": false,
"is_license_notice": false,
"is_license_reference": false,
"is_license_tag": true,
"is_license_intro": false,
"rule_length": 4,
"rule_relevance": 100,
"matched_text": "License: Apache-2.0",
"licenses": [
{
"key": "apache-2.0",
"name": "Apache License 2.0",
"short_name": "Apache 2.0",
"category": "Permissive",
"is_exception": false,
"is_unknown": false,
"owner": "Apache Software Foundation",
"homepage_url": "http://www.apache.org/licenses/",
"text_url": "http://www.apache.org/licenses/LICENSE-2.0",
"reference_url": "https://scancode-licensedb.aboutcode.org/apache-2.0",
"scancode_url": "https://github.com/nexB/scancode-toolkit/tree/develop/

→˓src/licensedcode/data/licenses/apache-2.0.LICENSE",
"spdx_license_key": "Apache-2.0",
"spdx_url": "https://spdx.org/licenses/Apache-2.0"

}
]

}
]

}
],
"license_clues": [],

}
]

}

After:

{
"license_references": [
{
"key": "apache-2.0",
"short_name": "Apache 2.0",

(continues on next page)

9.1. Reference Docs 190

ScanCode-Toolkit

(continued from previous page)

"name": "Apache License 2.0",
"category": "Permissive",
"owner": "Apache Software Foundation",
"homepage_url": "http://www.apache.org/licenses/",
"notes": "Per SPDX.org, this version was released January 2004 This license is OSI\

→˓ncertified\n",
"is_builtin": true,
"spdx_license_key": "Apache-2.0",
"other_spdx_license_keys": [
"LicenseRef-Apache",
"LicenseRef-Apache-2.0"

],
"osi_license_key": "Apache-2.0",
"text_urls": [
"http://www.apache.org/licenses/LICENSE-2.0"

],
"osi_url": "http://opensource.org/licenses/apache2.0.php",
"faq_url": "http://www.apache.org/foundation/licence-FAQ.html",
"other_urls": [
"http://www.opensource.org/licenses/Apache-2.0",
"https://opensource.org/licenses/Apache-2.0",
"https://www.apache.org/licenses/LICENSE-2.0"

],
"text": "Apache License\nVersion 2.0, {Truncated text}"

}
],
"license_rule_references": [
{
"license_expression": "apache-2.0",
"rule_identifier": "apache-2.0_65.RULE",
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/apache-2.0_65.RULE",
"referenced_filenames": [],
"is_license_text": false,
"is_license_notice": false,
"is_license_reference": false,
"is_license_tag": true,
"is_license_intro": false,
"rule_length": 4,
"rule_relevance": 100,
"rule_text": "license: Apache-2.0"

}
],
"files": [
{
"detected_license_expression": "apache-2.0",
"detected_license_expression_spdx": "Apache-2.0",
"license_detections": [
{
"license_expression": "apache-2.0",
"detection_log": [
"not-combined"

(continues on next page)

9.1. Reference Docs 191

ScanCode-Toolkit

(continued from previous page)

],
"matches": [
{
"score": 100.0,
"start_line": 1,
"end_line": 1,
"matched_length": 4,
"match_coverage": 100.0,
"matcher": "1-hash",
"license_expression": "apache-2.0",
"rule_identifier": "apache-2.0_65.RULE",
"matched_text": "License: Apache-2.0",
"rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/

→˓licensedcode/data/rules/apache-2.0_65.RULE"
}

]
}

],
"license_clues": [],

}
]

}

LicenseDetection Data

This is referencing by LicenseDetections objects, and has one or multiple license matches. This is linked to the resource
level detections through an identifier attribute present in both resource and codebase level detections. See the
Codebase level Unique License Detection above for more details on this.

There could be a list of ambiguous detections as a summary to review. This is WIP, see scancode-toolkit#3122.

9.1.3 Supported package manifests and package datafiles

Scancode supports a wide variety of package manifests, lockfiles and other package datafiles containing package and
dependency information.

This documentation page is generated automatically from available package parsers in scancode-toolkit during docu-
mentation builds.

9.1. Reference Docs 192

https://github.com/nexB/scancode-toolkit/issues/3122

ScanCode-Toolkit

Table 1: Supported Package Parsers
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

AboutCode
ABOUT file

*.ABOUT about about_file None https:
//
aboutcode-toolkit.
readthedocs.
io/
en/
latest/
specification.
html

Alpine Linux
.apk package
archive

*.apk alpine alpine_apk_archiveNone https:
//
wiki.
alpinelinux.
org/
wiki/
Alpine_
package_
format

Alpine Linux
APKBUILD
package script

*APKBUILD alpine alpine_apkbuildNone https:
//
wiki.
alpinelinux.
org/
wiki/
APKBUILD_
Reference

Alpine Linux
installed pack-
age database

*lib/apk/db/
installed

alpine alpine_installed_dbNone None

Android appli-
cation package

*.apk android android_apk Java https:
//
en.
wikipedia.
org/
wiki/
Apk_
(file_
format)

Android library
archive

*.aar android_lib android_aar_libraryJava https:
//
developer.
android.
com/
studio/
projects/
android-library

continues on next page

9.1. Reference Docs 193

https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/Alpine_package_format
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://en.wikipedia.org/wiki/Apk_(file_format
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Autotools con-
figure script

*/configure
*/configure.
ac

autotools autotools_configureNone https:
//
www.
gnu.
org/
software/
automake/

Apache Axis2
module archive

*.mar axis2 axis2_mar Java https:
//
axis.
apache.
org/
axis2/
java/
core/
docs/
modules.
html

Apache Axis2
module.xml

*/meta-inf/
module.xml

axis2 axis2_module_xmlJava https:
//
axis.
apache.
org/
axis2/
java/
core/
docs/
modules.
html

Bazel BUILD */BUILD bazel bazel_build None https:
//
bazel.
build/

Bower package */bower.json
*/.bower.
json

bower bower_json JavaScript https:
//
bower.
io

Buck file */BUCK buck buck_file None https:
//
buck.
build/

Buck metadata
file

*/METADATA.
bzl

buck buck_metadata None https:
//
buck.
build/

continues on next page

9.1. Reference Docs 194

https://www.gnu.org/software/automake/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/automake/
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://axis.apache.org/axis2/java/core/docs/modules.html
https://bazel.build/
https://bazel.build/
https://bazel.build/
https://bazel.build/
https://bower.io
https://bower.io
https://bower.io
https://bower.io
https://buck.build/
https://buck.build/
https://buck.build/
https://buck.build/
https://buck.build/
https://buck.build/
https://buck.build/
https://buck.build/

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Microsoft cabi-
net archive

*.cab cab microsoft_cabinetC https:
//
docs.
microsoft.
com/
en-us/
windows/
win32/
msi/
cabinet-files

Rust
Cargo.lock
dependencies
lockfile

*/Cargo.lock
*/cargo.lock

cargo cargo_lock Rust https:
//
doc.
rust-lang.
org/
cargo/
guide/
cargo-toml-vs-cargo-lock.
html

Rust
Cargo.toml
package mani-
fest

*/Cargo.toml
*/cargo.toml

cargo cargo_toml Rust https:
//
doc.
rust-lang.
org/
cargo/
reference/
manifest.
html

Chef cookbook
metadata.json

*/metadata.
json

chef chef_cookbook_metadata_jsonRuby https:
//
docs.
chef.
io/
config_
rb_
metadata/

Chef cookbook
metadata.rb

*/metadata.
rb

chef chef_cookbook_metadata_rbRuby https:
//
docs.
chef.
io/
config_
rb_
metadata/

continues on next page

9.1. Reference Docs 195

https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/
https://docs.chef.io/config_rb_metadata/

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Chrome exten-
sion

*.crx chrome chrome_crx JavaScript https:
//
chrome.
google.
com/
extensions

Cocoapods
Podfile

*Podfile cocoapods cocoapods_podfileObjective-C https:
//
guides.
cocoapods.
org/
using/
the-podfile.
html

Cocoapods
Podfile.lock

*Podfile.
lock

cocoapods cocoapods_podfile_lockObjective-C https:
//
guides.
cocoapods.
org/
using/
the-podfile.
html

Cocoapods
.podspec

*.podspec cocoapods cocoapods_podspecObjective-C https:
//
guides.
cocoapods.
org/
syntax/
podspec.
html

Cocoapods
.podspec.json

*.podspec.
json

cocoapods cocoapods_podspec_jsonObjective-C https:
//
guides.
cocoapods.
org/
syntax/
podspec.
html

PHP composer
manifest

*composer.
json

composer php_composer_jsonPHP https:
//
getcomposer.
org/
doc/
04-schema.
md

continues on next page

9.1. Reference Docs 196

https://chrome.google.com/extensions
https://chrome.google.com/extensions
https://chrome.google.com/extensions
https://chrome.google.com/extensions
https://chrome.google.com/extensions
https://chrome.google.com/extensions
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podspec.html
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

PHP composer
lockfile

*composer.
lock

composer php_composer_lockPHP https:
//
getcomposer.
org/
doc/
01-basic-usage.
md#
commit-your-composer-lock-file-to-version-control

conan external
source

*/conandata.
yml

conan conan_conandata_ymlC++ https:
//
docs.
conan.
io/
2/
tutorial/
creating_
packages/
handle_
sources_
in_
packages.
html#
using-the-conandata-yml-file

conan recipe */conanfile.
py

conan conan_conanfile_pyC++ https:
//
docs.
conan.
io/
2.
0/
reference/
conanfile.
html

Conda
meta.yml
manifest

*/meta.yaml conda conda_meta_yamlNone https:
//
docs.
conda.
io/

CPAN Perl
dist.ini

*/dist.ini cpan cpan_dist_ini Perl https:
//
metacpan.
org/
pod/
Dist::
Zilla::
Tutorial

continues on next page

9.1. Reference Docs 197

https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conan.io/2.0/reference/conanfile.html
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://metacpan.org/pod/Dist::Zilla::Tutorial
https://metacpan.org/pod/Dist::Zilla::Tutorial
https://metacpan.org/pod/Dist::Zilla::Tutorial
https://metacpan.org/pod/Dist::Zilla::Tutorial
https://metacpan.org/pod/Dist::Zilla::Tutorial
https://metacpan.org/pod/Dist::Zilla::Tutorial
https://metacpan.org/pod/Dist::Zilla::Tutorial
https://metacpan.org/pod/Dist::Zilla::Tutorial

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

CPAN Perl
Makefile.PL

*/Makefile.
PL

cpan cpan_makefile Perl https:
//
www.
perlmonks.
org/
?node_
id=
128077

CPAN Perl
module MANI-
FEST

*/MANIFEST cpan cpan_manifest Perl https:
//
metacpan.
org/
pod/
Module::
Manifest

CPAN Perl
META.json

*/META.json cpan cpan_meta_json Perl https:
//
metacpan.
org/
pod/
Parse::
CPAN::
Meta

CPAN Perl
META.yml

*/META.yml cpan cpan_meta_yml Perl https:
//
metacpan.
org/
pod/
CPAN::
Meta::
YAML

CRAN package
DESCRIP-
TION

*/
DESCRIPTION

cran cran_descriptionR https:
//
r-pkgs.
org/
description.
html

Debian control
file - extracted
layout

*/control.
tar.
gz-extract/
control

deb debian_control_extracted_debNone https:
//
www.
debian.
org/
doc/
debian-policy/
ch-controlfields.
html

continues on next page

9.1. Reference Docs 198

https://www.perlmonks.org/?node_id=128077
https://www.perlmonks.org/?node_id=128077
https://www.perlmonks.org/?node_id=128077
https://www.perlmonks.org/?node_id=128077
https://www.perlmonks.org/?node_id=128077
https://www.perlmonks.org/?node_id=128077
https://www.perlmonks.org/?node_id=128077
https://www.perlmonks.org/?node_id=128077
https://metacpan.org/pod/Module::Manifest
https://metacpan.org/pod/Module::Manifest
https://metacpan.org/pod/Module::Manifest
https://metacpan.org/pod/Module::Manifest
https://metacpan.org/pod/Module::Manifest
https://metacpan.org/pod/Module::Manifest
https://metacpan.org/pod/Module::Manifest
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/Parse::CPAN::Meta
https://metacpan.org/pod/CPAN::Meta::YAML
https://metacpan.org/pod/CPAN::Meta::YAML
https://metacpan.org/pod/CPAN::Meta::YAML
https://metacpan.org/pod/CPAN::Meta::YAML
https://metacpan.org/pod/CPAN::Meta::YAML
https://metacpan.org/pod/CPAN::Meta::YAML
https://metacpan.org/pod/CPAN::Meta::YAML
https://metacpan.org/pod/CPAN::Meta::YAML
https://r-pkgs.org/description.html
https://r-pkgs.org/description.html
https://r-pkgs.org/description.html
https://r-pkgs.org/description.html
https://r-pkgs.org/description.html
https://r-pkgs.org/description.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Debian control
file - source lay-
out

*/debian/
control

deb debian_control_in_sourceNone https:
//
www.
debian.
org/
doc/
debian-policy/
ch-controlfields.
html

Debian ma-
chine readable
file in source

*usr/share/
doc/*/
copyright

deb debian_copyright_in_packageNone https:
//
www.
debian.
org/
doc/
packaging-manuals/
copyright-format/
1.
0/

Debian ma-
chine readable
file in source

*/debian/
copyright

deb debian_copyright_in_sourceNone https:
//
www.
debian.
org/
doc/
packaging-manuals/
copyright-format/
1.
0/

Debian ma-
chine readable
file standalone

*/copyright
*_copyright

deb debian_copyright_standaloneNone https:
//
www.
debian.
org/
doc/
packaging-manuals/
copyright-format/
1.
0/

continues on next page

9.1. Reference Docs 199

https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Debian binary
package archive

*.deb deb debian_deb None https:
//
manpages.
debian.
org/
unstable/
dpkg-dev/
deb.
5.
en.
html

Debian distro-
less installed
database

*var/lib/
dpkg/status.
d/*

deb debian_distroless_installed_dbNone https:
//
www.
debian.
org/
doc/
debian-policy/
ch-controlfields.
html

Debian in-
stalled file
paths list

*var/lib/
dpkg/info/*.
list

deb debian_installed_files_listNone None

Debian in-
stalled file
MD5 and paths
list

*var/lib/
dpkg/info/*.
md5sums

deb debian_installed_md5sumsNone https:
//
www.
debian.
org/
doc/
manuals/
debian-handbook/
sect.
package-meta-information.
en.
html#
sect.
configuration-scripts

Debian in-
stalled pack-
ages database

*var/lib/
dpkg/status

deb debian_installed_status_dbNone https:
//
www.
debian.
org/
doc/
debian-policy/
ch-controlfields.
html

continues on next page

9.1. Reference Docs 200

https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Debian file
MD5 and paths
list in .deb
archive

*/control.
tar.
gz-extract/
md5sums */
control.tar.
xz-extract/
md5sums

deb debian_md5sums_in_extracted_debNone https:
//
www.
debian.
org/
doc/
manuals/
debian-handbook/
sect.
package-meta-information.
en.
html#
sect.
configuration-scripts

Debian package
original source
archive

*.orig.tar.
xz *.orig.
tar.gz

deb debian_original_source_tarballNone https:
//
manpages.
debian.
org/
unstable/
dpkg-dev/
deb.
5.
en.
html

Debian source
control file

*.dsc deb debian_source_control_dscNone https:
//
wiki.
debian.
org/
dsc

Debian source
package meta-
data archive

*.debian.
tar.xz
*.debian.
tar.gz

deb debian_source_metadata_tarballNone https:
//
manpages.
debian.
org/
unstable/
dpkg-dev/
deb.
5.
en.
html

continues on next page

9.1. Reference Docs 201

https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://wiki.debian.org/dsc
https://wiki.debian.org/dsc
https://wiki.debian.org/dsc
https://wiki.debian.org/dsc
https://wiki.debian.org/dsc
https://wiki.debian.org/dsc
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html
https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

macOS disk
image file

*.dmg *.
sparseimage

dmg apple_dmg None https:
//
en.
wikipedia.
org/
wiki/
Apple_
Disk_
Image

Java EAR ap-
plication.xml

*/META-INF/
application.
xml

ear java_ear_application_xmlJava https:
//
en.
wikipedia.
org/
wiki/
EAR_
(file_
format)

Java EAR
Enterprise
application
archive

*.ear ear java_ear_archiveJava https:
//
en.
wikipedia.
org/
wiki/
EAR_
(file_
format)

FreeBSD com-
pact package
manifest

*/
+COMPACT_MANIFEST

freebsd freebsd_compact_manifestNone https:
//
www.
freebsd.
org/
cgi/
man.
cgi?
pkg-create(8)#MANIFEST_FILE_DETAILS

continues on next page

9.1. Reference Docs 202

https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://en.wikipedia.org/wiki/EAR_(file_format
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8
https://www.freebsd.org/cgi/man.cgi?pkg-create(8

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

RubyGems gem
package archive

*.gem gem gem_archive Ruby https:
//
web.
archive.
org/
web/
20220326093616/
https:
//
piotrmurach.
com/
articles/
looking-inside-a-ruby-gem/

RubyGems
gem pack-
age extracted
archive

*/metadata.
gz-extract

gem gem_archive_extractedRuby https:
//
web.
archive.
org/
web/
20220326093616/
https:
//
piotrmurach.
com/
articles/
looking-inside-a-ruby-gem/

RubyGems
gemspec
manifest -
installed ven-
dor/bundle/specifications
layout

*/
specifications/
*.gemspec

gem gem_gemspec_installed_specificationsRuby https:
//
guides.
rubygems.
org/
specification-reference/

RubyGems
Bundler Gem-
file

*/Gemfile */
*.gemfile */
Gemfile-*

gem gemfile Ruby https:
//
bundler.
io/
man/
gemfile.
5.
html

continues on next page

9.1. Reference Docs 203

https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

RubyGems
Bundler Gem-
file - extracted
layout

*/data.
gz-extract/
Gemfile

gem gemfile_extractedRuby https:
//
bundler.
io/
man/
gemfile.
5.
html

RubyGems
Bundler Gem-
file.lock

*/Gemfile.
lock

gem gemfile_lock Ruby https:
//
bundler.
io/
man/
gemfile.
5.
html

RubyGems
Bundler Gem-
file.lock -
extracted layout

*/data.
gz-extract/
Gemfile.lock

gem gemfile_lock_extractedRuby https:
//
bundler.
io/
man/
gemfile.
5.
html

RubyGems
gemspec mani-
fest

*.gemspec gem gemspec Ruby https:
//
guides.
rubygems.
org/
specification-reference/

RubyGems
gemspec mani-
fest - extracted
data layout

*/data.
gz-extract/
*.gemspec

gem gemspec_extractedRuby https:
//
guides.
rubygems.
org/
specification-reference/

Go modules file */go.mod golang go_mod Go https:
//
go.
dev/
ref/
mod

continues on next page

9.1. Reference Docs 204

https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://bundler.io/man/gemfile.5.html
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://guides.rubygems.org/specification-reference/
https://go.dev/ref/mod
https://go.dev/ref/mod
https://go.dev/ref/mod
https://go.dev/ref/mod
https://go.dev/ref/mod
https://go.dev/ref/mod

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Go module
cheksums file

*/go.sum golang go_sum Go https:
//
go.
dev/
ref/
mod#
go-sum-files

Go Godeps */Godeps.
json

golang godeps Go https:
//
github.
com/
tools/
godep

Haxe hax-
elib.json
metadata file

*/haxelib.
json

haxe haxelib_json Haxe https:
//
lib.
haxe.
org/
documentation/
creating-a-haxelib-package/

InstallShield in-
staller

*.exe installshield installshield_installerNone https:
//
www.
revenera.
com/
install/
products/
installshield

iOS package
archive

*.ipa ios ios_ipa Objective-C https:
//
en.
wikipedia.
org/
wiki/
.ipa

ISO disk image *.iso *.udf
*.img

iso iso_disk_image None https:
//
en.
wikipedia.
org/
wiki/
ISO_
9660

continues on next page

9.1. Reference Docs 205

https://go.dev/ref/mod#go-sum-files
https://go.dev/ref/mod#go-sum-files
https://go.dev/ref/mod#go-sum-files
https://go.dev/ref/mod#go-sum-files
https://go.dev/ref/mod#go-sum-files
https://go.dev/ref/mod#go-sum-files
https://go.dev/ref/mod#go-sum-files
https://github.com/tools/godep
https://github.com/tools/godep
https://github.com/tools/godep
https://github.com/tools/godep
https://github.com/tools/godep
https://github.com/tools/godep
https://lib.haxe.org/documentation/creating-a-haxelib-package/
https://lib.haxe.org/documentation/creating-a-haxelib-package/
https://lib.haxe.org/documentation/creating-a-haxelib-package/
https://lib.haxe.org/documentation/creating-a-haxelib-package/
https://lib.haxe.org/documentation/creating-a-haxelib-package/
https://lib.haxe.org/documentation/creating-a-haxelib-package/
https://lib.haxe.org/documentation/creating-a-haxelib-package/
https://www.revenera.com/install/products/installshield
https://www.revenera.com/install/products/installshield
https://www.revenera.com/install/products/installshield
https://www.revenera.com/install/products/installshield
https://www.revenera.com/install/products/installshield
https://www.revenera.com/install/products/installshield
https://www.revenera.com/install/products/installshield
https://www.revenera.com/install/products/installshield
https://en.wikipedia.org/wiki/.ipa
https://en.wikipedia.org/wiki/.ipa
https://en.wikipedia.org/wiki/.ipa
https://en.wikipedia.org/wiki/.ipa
https://en.wikipedia.org/wiki/.ipa
https://en.wikipedia.org/wiki/.ipa
https://en.wikipedia.org/wiki/.ipa
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/ISO_9660

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Ant IVY
dependency file

*/ivy.xml ivy ant_ivy_xml Java https:
//
ant.
apache.
org/
ivy/
history/
latest-milestone/
ivyfile.
html

JAR Java
Archive

*.jar jar java_jar None https:
//
en.
wikipedia.
org/
wiki/
JAR_
(file_
format)

Java JAR
MANI-
FEST.MF

*/META-INF/
MANIFEST.MF

jar java_jar_manifestJava https:
//
docs.
oracle.
com/
javase/
tutorial/
deployment/
jar/
manifestindex.
html

JBOSS service
archive

*.sar jboss-service jboss_sar Java https:
//
docs.
jboss.
org/
jbossas/
docs/
Server_
Configuration_
Guide/
4/
html/
ch02s01.
html

continues on next page

9.1. Reference Docs 206

https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://en.wikipedia.org/wiki/JAR_(file_format
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

JBOSS ser-
vice.xml

*/meta-inf/
jboss-service.
xml

jboss-service jboss_service_xmlJava https:
//
docs.
jboss.
org/
jbossas/
docs/
Server_
Configuration_
Guide/
4/
html/
ch02s01.
html

Linux OS re-
lease metadata
file

*etc/
os-release
*usr/lib/
os-release

linux-distro etc_os_release None https:
//
www.
freedesktop.
org/
software/
systemd/
man/
os-release.
html

Gradle build
script

*/build.
gradle
*/build.
gradle.kts

maven build_gradle None None

Apache Maven
pom

*.pom *pom.
xml

maven maven_pom Java https:
//
maven.
apache.
org/
pom.
html

Apache Maven
pom properties
file

*/pom.
properties

maven maven_pom_propertiesJava https:
//
maven.
apache.
org/
pom.
html

continues on next page

9.1. Reference Docs 207

https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Meteor pack-
age.js

*/package.js meteor meteor_package JavaScript https:
//
docs.
meteor.
com/
api/
packagejs.
html

Mozilla XPI ex-
tension

*.xpi mozilla mozilla_xpi JavaScript https:
//
en.
wikipedia.
org/
wiki/
XPInstall

Microsoft MSI
installer

*.msi msi msi_installer None https:
//
docs.
microsoft.
com/
en-us/
windows/
win32/
msi/
windows-installer-portal

npm pack-
age.json

*/package.
json

npm npm_package_jsonJavaScript https:
//
docs.
npmjs.
com/
cli/
v8/
configuring-npm/
package-json

npm package-
lock.json
lockfile

*/
package-lock.
json */.
package-lock.
json

npm npm_package_lock_jsonJavaScript https:
//
docs.
npmjs.
com/
cli/
v8/
configuring-npm/
package-lock-json

continues on next page

9.1. Reference Docs 208

https://docs.meteor.com/api/packagejs.html
https://docs.meteor.com/api/packagejs.html
https://docs.meteor.com/api/packagejs.html
https://docs.meteor.com/api/packagejs.html
https://docs.meteor.com/api/packagejs.html
https://docs.meteor.com/api/packagejs.html
https://docs.meteor.com/api/packagejs.html
https://docs.meteor.com/api/packagejs.html
https://en.wikipedia.org/wiki/XPInstall
https://en.wikipedia.org/wiki/XPInstall
https://en.wikipedia.org/wiki/XPInstall
https://en.wikipedia.org/wiki/XPInstall
https://en.wikipedia.org/wiki/XPInstall
https://en.wikipedia.org/wiki/XPInstall
https://en.wikipedia.org/wiki/XPInstall
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

npm
shrinkwrap.json
lockfile

*/
npm-shrinkwrap.
json

npm npm_shrinkwrap_jsonJavaScript https:
//
docs.
npmjs.
com/
cli/
v8/
configuring-npm/
npm-shrinkwrap-json

yarn.lock lock-
file v1 format

*/yarn.lock npm yarn_lock_v1 JavaScript https:
//
classic.
yarnpkg.
com/
lang/
en/
docs/
yarn-lock/

yarn.lock lock-
file v2 format

*/yarn.lock npm yarn_lock_v2 JavaScript https:
//
classic.
yarnpkg.
com/
lang/
en/
docs/
yarn-lock/

NSIS installer *.exe nsis nsis_installer None https:
//
nsis.
sourceforge.
io/
Main_
Page

NuGet nupkg
package archive

*.nupkg nuget nuget_nupkg None https:
//
en.
wikipedia.
org/
wiki/
Open_
Packaging_
Conventions

continues on next page

9.1. Reference Docs 209

https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/
https://nsis.sourceforge.io/Main_Page
https://nsis.sourceforge.io/Main_Page
https://nsis.sourceforge.io/Main_Page
https://nsis.sourceforge.io/Main_Page
https://nsis.sourceforge.io/Main_Page
https://nsis.sourceforge.io/Main_Page
https://nsis.sourceforge.io/Main_Page
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions
https://en.wikipedia.org/wiki/Open_Packaging_Conventions

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

NuGet nus-
pec package
manifest

*.nuspec nuget nuget_nupsec None https:
//
docs.
microsoft.
com/
en-us/
nuget/
reference/
nuspec

Ocaml Opam
file

*opam opam opam_file Ocaml https:
//
opam.
ocaml.
org/
doc/
Manual.
html#
Common-file-format

Java OSGi
MANI-
FEST.MF

None osgi java_osgi_manifestJava https:
//
docs.
oracle.
com/
javase/
tutorial/
deployment/
jar/
manifestindex.
html

Dart pubspec
lockfile

*pubspec.
lock

pubspec pubspec_lock dart https:
//
web.
archive.
org/
web/
20220330081004/
https:
//
gpalma.
pt/
blog/
what-is-the-pubspec-lock/

continues on next page

9.1. Reference Docs 210

https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://docs.microsoft.com/en-us/nuget/reference/nuspec
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://opam.ocaml.org/doc/Manual.html#Common-file-format
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/
https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Dart pubspec
manifest

*pubspec.
yaml

pubspec pubspec_yaml dart https:
//
dart.
dev/
tools/
pub/
pubspec

Conda yaml
manifest

*conda.yaml
*conda.yml

pypi conda_yaml Python https:
//
docs.
conda.
io/

pip require-
ments file

requirement.
txt
requirement.
pip
requirement.
in
*requires.
txt
*requirements/
*.txt
*requirements/
*.pip
*requirements/
*.in *reqs.
txt

pypi pip_requirementsPython https:
//
pip.
pypa.
io/
en/
latest/
reference/
requirements-file-format/

Pipfile *Pipfile pypi pipfile Python https:
//
github.
com/
pypa/
pipfile

Pipfile.lock *Pipfile.
lock

pypi pipfile_lock Python https:
//
github.
com/
pypa/
pipfile

PyPI ed-
itable local
installation
PKG-INFO

*.egg-info/
PKG-INFO

pypi pypi_editable_egg_pkginfoPython https:
//
peps.
python.
org/
pep-0376/

continues on next page

9.1. Reference Docs 211

https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://dart.dev/tools/pub/pubspec
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://pip.pypa.io/en/latest/reference/requirements-file-format/
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://github.com/pypa/pipfile
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

PyPI egg *.egg pypi pypi_egg Python https:
//
web.
archive.
org/
web/
20210604075235/
http:
//
peak.
telecommunity.
com/
DevCenter/
PythonEggs

PyPI extracted
egg PKG-INFO

*/EGG-INFO/
PKG-INFO

pypi pypi_egg_pkginfoPython https:
//
peps.
python.
org/
pep-0376/

Python pypro-
ject.toml

*pyproject.
toml

pypi pypi_pyproject_tomlPython https:
//
peps.
python.
org/
pep-0621/

PyPI extracted
sdist PKG-
INFO

*/PKG-INFO pypi pypi_sdist_pkginfoPython https:
//
peps.
python.
org/
pep-0314/

Python
setup.cfg

*setup.cfg pypi pypi_setup_cfg Python https:
//
peps.
python.
org/
pep-0390/

continues on next page

9.1. Reference Docs 212

https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0376/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0314/
https://peps.python.org/pep-0314/
https://peps.python.org/pep-0314/
https://peps.python.org/pep-0314/
https://peps.python.org/pep-0314/
https://peps.python.org/pep-0314/
https://peps.python.org/pep-0390/
https://peps.python.org/pep-0390/
https://peps.python.org/pep-0390/
https://peps.python.org/pep-0390/
https://peps.python.org/pep-0390/
https://peps.python.org/pep-0390/

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Python
setup.py

*setup.py pypi pypi_setup_py Python https:
//
docs.
python.
org/
3.
11/
distutils/
setupscript.
html

PyPI wheel *.whl pypi pypi_wheel Python https:
//
peps.
python.
org/
pep-0427/

PyPI installed
wheel META-
DATA

*.dist-info/
METADATA

pypi pypi_wheel_metadataPython https:
//
packaging.
python.
org/
en/
latest/
specifications/
core-metadata/

None */README.
android
*/README.
chromium
*/README.
facebook
*/README.
google
*/README.
thirdparty

readme readme None None

RPM package
archive

*.rpm *.src.
rpm *.srpm *.
mvl *.vip

rpm rpm_archive None https:
//
en.
wikipedia.
org/
wiki/
RPM_
Package_
Manager

continues on next page

9.1. Reference Docs 213

https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://docs.python.org/3.11/distutils/setupscript.html
https://peps.python.org/pep-0427/
https://peps.python.org/pep-0427/
https://peps.python.org/pep-0427/
https://peps.python.org/pep-0427/
https://peps.python.org/pep-0427/
https://peps.python.org/pep-0427/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

RPM installed
package BDB
database

*var/lib/
rpm/Packages

rpm rpm_installed_database_bdbNone https:
//
man7.
org/
linux/
man-pages/
man8/
rpmdb.
8.
html

RPM installed
package NDB
database

*usr/lib/
sysimage/
rpm/
Packages.db

rpm rpm_installed_database_ndbNone https:
//
fedoraproject.
org/
wiki/
Changes/
NewRpmDBFormat

RPM installed
package SQLite
database

*rpm/rpmdb.
sqlite

rpm rpm_installed_database_sqliteNone https:
//
fedoraproject.
org/
wiki/
Changes/
Sqlite_
Rpmdb

RPM specfile *.spec rpm rpm_spefile None https:
//
en.
wikipedia.
org/
wiki/
RPM_
Package_
Manager

shell archive *.shar shar shar_shell_archiveNone https:
//
en.
wikipedia.
org/
wiki/
Shar

continues on next page

9.1. Reference Docs 214

https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://man7.org/linux/man-pages/man8/rpmdb.8.html
https://fedoraproject.org/wiki/Changes/NewRpmDBFormat
https://fedoraproject.org/wiki/Changes/NewRpmDBFormat
https://fedoraproject.org/wiki/Changes/NewRpmDBFormat
https://fedoraproject.org/wiki/Changes/NewRpmDBFormat
https://fedoraproject.org/wiki/Changes/NewRpmDBFormat
https://fedoraproject.org/wiki/Changes/NewRpmDBFormat
https://fedoraproject.org/wiki/Changes/NewRpmDBFormat
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/Shar
https://en.wikipedia.org/wiki/Shar
https://en.wikipedia.org/wiki/Shar
https://en.wikipedia.org/wiki/Shar
https://en.wikipedia.org/wiki/Shar
https://en.wikipedia.org/wiki/Shar
https://en.wikipedia.org/wiki/Shar

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Squashfs disk
image

None squashfs squashfs_disk_imageNone https:
//
en.
wikipedia.
org/
wiki/
SquashFS

Java Web
Application
Archive

*.war war java_war_archiveJava https:
//
en.
wikipedia.
org/
wiki/
WAR_
(file_
format)

Java WAR
web/xml

*/WEB-INF/
web.xml

war java_war_web_xmlJava https:
//
en.
wikipedia.
org/
wiki/
WAR_
(file_
format)

Windows Reg-
istry Installed
Program -
Docker SOFT-
WARE

*/Files/
Windows/
System32/
config/
SOFTWARE

windows-program win_reg_installed_programs_docker_file_softwareNone https:
//
en.
wikipedia.
org/
wiki/
Windows_
Registry

Windows Reg-
istry Installed
Program -
Docker Soft-
ware Delta

*/Hives/
Software_Delta

windows-program win_reg_installed_programs_docker_software_deltaNone https:
//
en.
wikipedia.
org/
wiki/
Windows_
Registry

continues on next page

9.1. Reference Docs 215

https://en.wikipedia.org/wiki/SquashFS
https://en.wikipedia.org/wiki/SquashFS
https://en.wikipedia.org/wiki/SquashFS
https://en.wikipedia.org/wiki/SquashFS
https://en.wikipedia.org/wiki/SquashFS
https://en.wikipedia.org/wiki/SquashFS
https://en.wikipedia.org/wiki/SquashFS
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/WAR_(file_format
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry

ScanCode-Toolkit

Table 1 – continued from previous page
Description Path Patterns Package type Datasource ID Primary Lan-

guage
Doc-
u-
men-
ta-
tion
URL

Windows
Registry In-
stalled Program
- Docker
UtilityVM
SOFTWARE

*/UtilityVM/
Files/
Windows/
System32/
config/
SOFTWARE

windows-program win_reg_installed_programs_docker_utility_softwareNone https:
//
en.
wikipedia.
org/
wiki/
Windows_
Registry

Microsoft Up-
date Manifest
.mum file

*.mum windows-update microsoft_update_manifest_mumNone None

Windows
Portable
Executable
metadata

*.exe *.
dll *.mui
*.mun *.com
*.winmd *.
sys *.tlb
.exe_
.dll_
.mui_
.mun_
.com_
.winmd_
.sys_ *.
tlb_* *.ocx

winexe windows_executableNone https:
//
en.
wikipedia.
org/
wiki/
Portable_
Executable

9.1. Reference Docs 216

https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

10.1 Something Missing?

If something is missing in the documentation or if you found some part confusing, please file an issue with your
suggestions for improvement. Use the “Documentation Improvement” template. Your help makes ScanCode docs
better, we love hearing from you!

217

https://github.com/nexB/scancode-toolkit/issues/new

	Are you new to Scancode-Toolkit?
	Table of Contents
	Try ScanCode Toolkit
	Installing ScanCode
	Before you start using ScanCode
	Scan a Codebase
	Use ScanCode Better
	All Tutorials/How-Tos
	ScanCode Versions

	Learn more about ScanCode Toolkit
	CLI Reference
	How Scancode Works
	Plugins

	Contribute
	General Information
	Contribute Code
	Good First Issues
	Add new Functionality/Enhancement to ScanCode
	Update our Documentation
	Participate in GSoC/GSoD

	Getting Started
	Getting Started
	Home
	Why ScanCode?
	What does ScanCode Toolkit do?
	How does it work?
	Alternative?
	History
	Other Important Documentation

	Comprehensive Installation
	Before Installing
	System Requirements
	Prerequisites

	Installation as an Application: Downloading Releases
	Installation on Linux and Mac
	Installation on Windows 10
	Un-installation

	Installation via Docker:
	Download the ScanCode-Toolkit Source Code
	Build the Docker image
	Run using Docker

	Installation from Source Code: Git Clone
	Download the ScanCode-Toolkit Source Code
	Configure the build

	Installation as a library: via pip
	Command Invocation Variations

	Command Line Options Reference
	Command Line Interface Reference
	Synopsis
	Installation
	Quickstart
	Type of Options
	Output Formats
	JSON file output
	Static HTML output

	Other Important Documentation

	Getting Help from the Command Line
	All Documentation/Help Options
	Help text
	Command Examples Text
	Plugins Help Text
	--list-packages Option
	--print-options Option

	All Available Options
	All “Basic” Scan Options
	All Extractcode Options
	scancode-reindex-licenses Usage
	Options
	All “Core” Scan Options
	All Scan Output Options
	All “Output Control” Scan Options
	All “Pre-Scan” Options
	All “Post-Scan” Options

	How to Run a Scan
	Prerequisites
	Looking into Files
	Performing Extraction
	Deciding Scan Options
	Running The Scan
	Other Important Documentation

	Other available CLIs
	scancode-reindex-licenses Usage
	Options
	All Extractcode Options
	scancode-reindex-licenses command
	--additional-directory Option:
	--only-builtin Option:
	--all-languages Option:
	--load-dump Option

	Basic Options
	All “Basic” Scan Options
	--copyright Option
	--license Option
	--package Option
	--info Option
	--email Option
	--url Option
	--generated Option
	--max-email Option
	--max-url Option
	--license-score Option
	--license-text Option
	--license-url-template Option
	--license-text-diagnostics Option
	--license-diagnostics Option

	Core Options
	All “Core” Scan Options
	Comparing Progress Message Options
	--timeout Option
	--from-json Option
	--max-in-memory Option
	--max_depth Option

	Scancode Output Formats
	All Scan Output Options
	Print to stdout (Terminal)
	--json FILE
	--json-pp FILE
	--json-lines FILE
	Comparing Different json Output Formats
	--spdx-rdf FILE
	--spdx-tv FILE
	--html FILE
	--html-app FILE
	--csv FILE
	--cyclonedx FILE
	--cyclonedx-xml FILE
	Custom Output Format

	Controlling Scancode Output and Filters
	All “Output Control” Scan Options
	--strip-root Vs. --full-root
	--ignore-author <pattern> Option
	--ignore-copyright-holder <pattern> Option
	--only-findings Plugin

	Pre-Scan Options
	All “Pre-Scan” Options
	--ignore Option
	--include Option
	--classify
	--facet Option
	Glob Pattern Matching
	What is a Facet?

	Post-Scan Options
	All “Post-Scan” Options
	--mark-source Option
	--consolidate Option
	--filter-clues Option
	--license-clarity-score Option
	--license-policy FILE Option
	--license-references Option
	--summary Option
	--tallies Option
	--tallies-by-facet Option
	--tallies-key-files Option
	--tallies-with-details Option

	Tutorials
	Basic Tutorials
	How to Run a Scan
	Prerequisites
	Looking into Files
	Performing Extraction
	Deciding Scan Options
	Running The Scan
	Other Important Documentation

	How to Visualize Scan results
	How To Extract Archives
	Usage:
	All Extractcode Options

	How to specify Scancode Output Format
	JSON
	Print to stdout (Terminal)
	HTML
	Custom Output Format

	How to set what will be detected in Scan
	All “Basic” Scan Options
	Different Scans
	Scan for all clues:
	Scan for license and copyright clues:
	Scan for emails and URLs:
	Scan for package information:
	Scan for file information:
	To see more example scans:

	Add A Post-Scan Plugin
	Scan plugins in scancode-toolkit
	Built-In vs. Optional Installation
	Built-In
	Optional

	Example Post-Scan Plugin: Hello ScanCode
	1. Top-level folder – /scancode-hello/
	2. 2nd-level folder – /src/
	3. 3rd-level folder – /hello_scancode/
	Imports
	Create a PostScanPlugin class

	Load the plugin
	More-complex examples

	How-To Documents
	How-To Guides
	How To Add a New License for Detection
	How to add a new license for detection?

	How to Add New License Rules for Enhanced Detection
	How to add a new license detection rule?

	How to Install External Licenses to Use in License Detection
	How to install a plugin containing external licenses and/or rules
	Entry points definition in setup.py
	Directory structure
	Installing and using the plugin
	Writing tests for new installed licenses

	How to add external licenses and/or rules from a directory
	Adding the licenses to the index

	scancode-reindex-licenses Usage
	Options

	How To Generate Attribution from a ScanCode Scan
	How To generate attribution from a ScanCode scan?

	Contribute To ScanCode
	Contribute
	Contributing to Code Development
	Code layout and conventions
	Running tests
	Thirdparty libraries and dependencies management
	Using ScanCode as a Python library

	How to cut a new release
	Update version
	Tag and publish
	Automated Release Process

	Contributing to the Documentation
	Setup Local Build
	Share Document Improvements
	Continuous Integration
	Style Checks Using Doc8
	How To Run Style Tests
	What is Checked?

	Interspinx
	Style Conventions for the Documentaion
	Converting from Markdown
	Automatic Docs Generation

	Roadmap
	Legend
	Work in Progress
	Package manifest and dependency parsers
	License Detection
	Copyrights
	Core features
	Classification, summarization and deduction
	Source code support (some will be spawned as their own tool)
	Compiled code support (will be spawned as their own tool)
	Data exchange
	Packaging
	Documentation
	CI integration

	Other work in progress
	Package mining and matching
	Other

	Completed features
	Core scans
	Outputs and UI
	Package and dependencies
	Speed!
	Other

	Google Summer of Code 2017 - Final report
	Project: Plugin architecture for ScanCode
	1. Format :
	2. Post-scan :
	3. Pre-scan :
	4. Scan (proper):
	5. Other work:
	6. What’s left?

	Google Summer of Code 2019 - Final report
	Project: scancode-toolkit to Python 3
	Overview
	Implementation
	Challenging part of Project
	Outcome

	Google Summer of Code 2021 Final report
	Organisation - AboutCode
	Project: Detect Unknown Licenses and Indirect License References in Scancode
	Description
	Improvement in the License Data Model Definition
	Reporting known and Unknown licenses separately
	Follow License References to another file
	Improve license detection of Unknown Licenses
	Addition of some new Licenses

	Pre-GSoC

	Plugins Documentation
	Plugins
	Plugin Architecture
	Abstract:
	Description:
	Why pluggy?
	1. Pre - scan hook
	2. Scan proper hook
	3. Post - scan hook

	Existing solutions:

	License Policy Plugin
	Policy File Specification
	Using the Plugin
	Example Output

	Plugin Tutorials
	CPP Includes Plugin
	Using the Plugin
	Example Output

	LKMClue Plugin
	Using the Plugin
	Example Output

	Dwarf Plugin
	Specification
	Using the Plugin
	Example Output

	Miscellaneous Documents
	Miscellaneous
	FAQ
	Why ScanCode?
	How is ScanCode different from Debian licensecheck?
	How can I integrate ScanCode in my application?
	Can I install ScanCode in a Unicode path?
	The line numbers for a copyright found in a binary are weird. What do they mean?

	Support
	Documentation
	Issue Tracker
	Discussions
	Join the conversation

	Runtime Performance Reports
	Versioning approach

	Reference Documents
	Reference Docs
	Overview
	How does ScanCode detect licenses?

	License Detection Updates
	The Problem:
	What is a LicenseDetection?
	Examples

	Chnagelog Summary
	Change in License Data format: Resource
	Change in License Data format: Package
	Codebase level Unique License Detection
	LicenseMatch Result Data
	Only reference License related data
	License Data
	Rule Data
	CLI option
	Comparision: Before/After license references
	LicenseDetection Data

	Supported package manifests and package datafiles

	Indices and Tables
	Something Missing?

