

ScanCode Toolkit Documentation

Welcome to ScanCode Toolkit Documentation!

If you are new to ScanCode Toolkit, start here:

	Are you new to Scancode-Toolkit?
	Table of Contents

	Try ScanCode Toolkit

	Installing ScanCode

	Learn more about ScanCode Toolkit

	Contribute

Here’s a list of more Documentation Pages:

	A Synopsis of ScanCode Command Line Options

	Tutorials on How to Run a Scan and How to Visualize Scan results

	An exhaustive List of All Available Options

	Documentation on Contributing to Code Development

	Documentation on Plugin Architecture

	FAQ

Getting Started

	Getting Started
	Home

	Comprehensive Installation

	Are you new to Scancode-Toolkit?

Command Line Options Reference

Reference documents describe the Command Line options, and application concepts in depth.

	Command Line Interface Reference
	Synopsis

	Getting Help from the Command Line

	All Available Options

	How to Run a Scan

	Other available CLIs

	Basic Options

	Core Options

	Scancode Output Formats

	Controlling Scancode Output and Filters

	Pre-Scan Options

	Post-Scan Options

Tutorials

Tutorial documents provide specific instructions to help you get started.

	Basic Tutorials
	How to Run a Scan

	How to Visualize Scan results

	How To Extract Archives

	How to specify Scancode Output Format

	How to set what will be detected in Scan

	Add A Post-Scan Plugin

How-To Documents

How-To documents explain how to accomplish specific tasks.

	How-To Guides
	How To Add a New License for Detection

	How to Add New License Rules for Enhanced Detection

	How to Install External Licenses to Use in License Detection

	How To Generate Attribution from a ScanCode Scan

Contribute To ScanCode

	Contribute
	Contributing to Code Development

	How to cut a new release

	Contributing to the Documentation

	Roadmap

	Google Summer of Code 2017 - Final report

	Google Summer of Code 2019 - Final report

	Google Summer of Code 2021 Final report

Plugins Documentation

	Plugins
	Plugin Architecture

	License Policy Plugin

	Plugin Tutorials

	CPP Includes Plugin

	LKMClue Plugin

	Dwarf Plugin

Miscellaneous Documents

	Miscellaneous
	FAQ

	Support

	Runtime Performance Reports

	Versioning approach

Reference Documents

Reference documents provide reference pages for technical reference information
about ScanCode Toolkit, including how it works and supported features.

	Reference Docs
	Overview

	License Detection Updates

	Supported package manifests and package datafiles

Indices and Tables

	Index

	Module Index

	Search Page

Something Missing?

If something is missing in the documentation or if you found some part confusing, please file
an issue [https://github.com/nexB/scancode-toolkit/issues/new] with your suggestions for
improvement. Use the “Documentation Improvement” template.
Your help makes ScanCode docs better, we love hearing from you!

Are you new to Scancode-Toolkit?

This is the perfect place to start, if you are new to ScanCode-Toolkit. Have a quick look at the
table of contents below, as these are the main sections you might need help on. These sections
have extensive links to other important documentation pages, and make sure you go through them
all.

Table of Contents

	Try ScanCode Toolkit

	Before you start using ScanCode

	Installing ScanCode

	Scan a Codebase

	Use ScanCode Better

	All Tutorials/How-Tos

	ScanCode Versions

	Learn more about ScanCode Toolkit

	CLI Reference

	How Scancode Works

	Plugins

	Contribute

	General Information

	Contribute Code

	Good First Issues

	Add new Functionality/Enhancement to ScanCode

	Update our Documentation

	Participate in GSoC/GSoD

Try ScanCode Toolkit

This section is about using the ScanCode Toolkit, i.e. Performing a scan on a codebase/files to
determine their license, copyrights and other information, according to your requirements.

	The Scan a Codebase section helps you with configuring your virtual environment,
installing Scancode and performing a basic scan, and subsequently visualize the results.

	The Use ScanCode Better section helps you customize the scan according to your
requirements, and better understand the advanced features you can use.

	The All Tutorials/How-Tos is essentially an exhaustive list of all Tutorials and How To’s
with a brief description on what they help you to achieve.

Installing ScanCode

Scancode-Toolkit can be installed in 3 different methods.

	The Scan a Codebase section helps you with configuring and
installing ScanCode and performing a basic scan, and then visualizing the
results.

	The Use ScanCode Better section helps you customize the scan
according to your requirements, and better understand advanced features.

	The All Tutorials/How-Tos is an exhaustive directory of all Tutorials
and How To’s with a brief description.

Before you start using ScanCode

	You need to make sure Prerequisites are installed, and a virtualenv [https://docs.python-guide.org/dev/virtualenvs/]
is created.

Installation as an Application: Downloading Releases
Installation via Docker:
Installation as a library: via pip
Installation from Source Code: Git Clone

	Now you can either follow the instructions for the recommended Installation as an Application: Downloading Releases method ,
or run pip install scancode-toolkit[full] like that in the Installation as a library: via pip documentation.
Alternatively, you can also Installation from Source Code: Git Clone.

	Run scancode -h to make sure Scancode was installed properly.
If this shows any Error, refer the Common Installation Errors Issue [https://github.com/nexB/scancode-toolkit/issues/1837]
for common errors.

Note

Refer Quickstart to make sure you are using the scan command correctly.

Note

For Windows, Refer to Installation on Windows 10 for installing easily using Releases.

Scan a Codebase

Once you are all set up with Scancode Toolkit, i.e. Running scancode -h shows the
Help text, you can start scanning files or a codebase.

	Refer Quickstart for commonly used scan commands, and commonly used
Output Formats. (The recommended output format is JSON)

	Refer this section for Extractcode Options.

	How to Run a Scan is a sample tutorial for absolute beginners, to walk them through the
process of running a scan. Follow this tutorial and perform a scan on the sample folder
distributed with ScanCode, or any file/folder of your choice. Avoid advanced options, and just
follow the basic instructions.

	ScanCode generates output files with scan results. You can visualize JSON result files using
Scancode Workbench [https://github.com/nexB/scancode-workbench]. Follow this tutorial How to Visualize Scan results
to visualize the scan results.

Use ScanCode Better

	Go through all the options in the page All Available Options, to know about Scancode Command
Line options. You can then modify the Scan according to your requirements.

All Tutorials/How-Tos

The Tutorials are:

	How to Run a Scan

	How to Visualize Scan results

	How to set what will be detected in Scan

	How To Extract Archives

	How to specify Scancode Output Format

	Add A Post-Scan Plugin

The How-To’s are:

	How To Add a New License for Detection

	How to Add New License Rules for Enhanced Detection

ScanCode Versions

	You can see all Scancode Toolkit versions on the GitHub release page [https://github.com/nexB/scancode-toolkit/releases].

	Read the CHANGELOG [https://github.com/nexB/scancode-toolkit/blob/develop/CHANGELOG.rst] for more information on specific releases.

	If you want to use/test a specific version of Scancode Toolkit, you can follow the instructions
in Installation from Source Code: Git Clone docs.

Learn more about ScanCode Toolkit

Here we give an introduction on the Scancode Toolkit Documentation Sections that can help you to
learn more about Scancode Toolkit.

CLI Reference

This section contains a complete guide to ScanCode Toolkit Command Line options, i.e. What the
command-line options are, how different options affect the scan and outputs, how to use these
options and examples of their use cases.

Now this section has three types of pages:

	The Synopsis page and the How to Run a Scan page as summaries.

	An exhaustive list of all Command Line Options at All Available Options

	All the other pages detailing the Type of Options

Note that the page for one type of options also has a short list of all the options detailed on
that page in the beginning. The All Available Options page just has all of them together, and
also the extractcode options.

How Scancode Works

This section has documentation on How does ScanCode detect licenses?.

Plugins

Plugins are an integral part of ScanCode Toolkit in the sense they are used to easily extend
Scancode capabilities, and developers can code their own plugins according to their requirements.

This section has documentation on:

	The Plugin Architecture

	The License Policy Plugin

	All Plugin Tutorials

Contribute

If you are looking to Contribute to Scancode Toolkit, this is where you start.

General Information

	Also refer the Contribution [https://github.com/nexB/scancode-toolkit/blob/develop/CONTRIBUTING.rst] page here.

	For more Project Ideas, refer Contributor Project Ideas (old) [https://aboutcode.readthedocs.io/en/latest/archive/contributor_project_ideas.html#contributor-project-ideas].

	Before committing your work, make sure you have read this post on Writing good Commit Messages [https://aboutcode.readthedocs.io/en/latest/contributing/writing_good_commit_messages.html#good-commit-messages].

Contribute Code

If you haven’t contributed to Scancode Toolkit refer Good First Issues.

To determine where to contribute, you can refer:

	ScanCode Toolkit tracks issues via the GitHub Issue tracker [https://github.com/nexB/scancode-toolkit/issues]

	Broad milestones [https://github.com/nexB/scancode-toolkit/milestones] for upcoming versions are also maintained.

And documentation related to contributing code can be referred at Contributing to Code Development.

Good First Issues

A good first issue [https://github.com/nexB/scancode-toolkit/labels/good%20first%20issue]
means it’s recommended for people who haven’t contributed to Scancode Toolkit before.

Add new Functionality/Enhancement to ScanCode

There are two main paths you can follow to add a new functionality to Scancode.
They are:

	Add the functionality to Scancode itself.

	Add plugins if the functionality is very much application dependent.

Refer enhancement issues [https://github.com/nexB/scancode-toolkit/labels/enhancement] for the first type of
enhancements. If you want to add a plugin to implement the functionality, refer all the
Plugin Tutorials.

Update our Documentation

Maintaining a comprehensive, accurate, updated and effective documentation is very important
as that directly affects the acceptability of Scancode Toolkit.

To contribute to Scancode Toolkit Documentation, first refer the Contributing to the Documentation section.

The sections in this page cover the following:

	Setup Local Build

	Share Document Improvements

	Continuous Integration system for the Documentation

	Style Checks Using Doc8

	Interspinx

	Style Conventions for the Documentaion

You can contribute to the following Open Issues on documentation.

	First Timers Only Issues List [https://github.com/nexB/scancode-toolkit/issues/1826]

	Documentation Inconsistencies Tracker [https://github.com/nexB/scancode-toolkit/issues/1813]

	ScanCode Toolkit Documentation Roadmap [https://github.com/nexB/scancode-toolkit/issues/1824]

	Issues with label Documentation [https://github.com/nexB/scancode-toolkit/issues?q=is%3Aopen+is%3Aissue+label%3Adocumentation]

Note

Refer Something Missing? to report Documentation Errors or to request Improvements.

Also, consider contributing to other Aboutcode Project Documentations, as they need more support.

Participate in GSoC/GSoD

If you want to participate in any of the two programs:

	Google Summer of Code [https://summerofcode.withgoogle.com]

	Google Season of Docs [https://developers.google.com/season-of-docs]

Then:

	Keep an eye out for Application Timelines.

	Solve multiple of these Good First Issues to demonstrate your skills,
and improve your chances of selection.

	Refer to the Projects Ideas List for details on tentative projects.

	GSoC2023 [https://github.com/nexB/aboutcode/wiki/GSOC-2023]

	Remain active in Element and talk with the organization mentors well ahead of the deadlines.

	Select projects according to your skills and finalize project proposals.

	Discuss your proposals extensively with corresponding mentors.

	Apply for the Programs well before the Deadline.

Getting Started

	Home
	Why ScanCode?

	What does ScanCode Toolkit do?

	How does it work?

	Alternative?

	History

	Other Important Documentation

	Comprehensive Installation
	Before Installing

	Installation as an Application: Downloading Releases

	Installation via Docker:

	Installation from Source Code: Git Clone

	Installation as a library: via pip

	Command Invocation Variations

	Are you new to Scancode-Toolkit?
	Table of Contents

	Try ScanCode Toolkit

	Installing ScanCode

	Learn more about ScanCode Toolkit

	Contribute

Home

ScanCode does scan code to detect packages and dependencies, licenses,
copyrights and more.

Why ScanCode?

Discovering the origin and license for a software component is important, but it
is often much harder to accomplish than it should be because:

	A typical software project may reuse tens or thousands of third-party software components

	Software authors do not always provide copyright and license information

	Copyright and license information that is provided may be hard to find and interpret

ScanCode tries to address these issues by offering:

	A simple command line approach that runs on Windows, Linux, and macOS

	A comprehensive code scanner that can detect origin and license information in
codebase files, including binaries

	A comprehensive set of package manifests and lockfile parsers to report direct
and pinned dependencies

	Your choice of JSON or other output formats (YAML, SPDX, HTML, CSV) for
integration with other tools

	Well-tested, easy to hack, and well-documented code

	A plugin system for easily adding new Functionality to Scans.

	Extensive documentation and support.

	We release of the code and reference data under permissive licenses (Apache
2.0 and CC-BY-4.0)

	ScanCode.io to assemble scripted and specialied code analysis pipelines with
a web-based analysis server

	ScanCode workbench for desktop-based scans visualization

ScanCode is recognized as the industry leading engine for license and copyright
detection and used as the basis of several open source compliance efforts in
open source projects and companies. It’s detection engine is embedded in the
most advanced open source and commercial tools available today for Software
Composition Analysis.

What does ScanCode Toolkit do?

ScanCode detects and normalizes origin, dependencies, licensing and other
related information in your code:

	by parsing package manifests and dependencies lock files to a normalized
metadata model and assigning each an identifying Package URL [https://github.com/package-url/purl-spec],

	by detecting license tags, notices and texts in text and binaries using the
world most comprehensive database of licenses texts and notices and a unique
combination of techniuqes,

	by recognizing copyright statements using an advanced natural language parsing
grammar and detecting other origin clues (such as emails, urls, and authors)

Using this data you can:

	Discover the origin and license of the open source and third-party software
components that you use,

	Discover direct dependent packages and indirect pinned or locked dependencies,

	Assemble a software component Inventory of your codebase, and report the data
using standard SBOM formats,

	Use this data as the input to:

	open source license compliance obligations such as attribution and redistribution.

	open source package vulnerability detection.

How does it work?

Given a code directory, ScanCode will “scan code”:

	Extract files from any archive using a universal archive extractor [https://github.com/nexB/extractcode]

	Collect an inventory of the code files and classify the code using file types

	Extract texts from binary files as needed

	Use an extensible rules engine to detect open source license text, notices
tags, mentions and license expressions with over 31,000 detection rules.

	Use a specialized natural language parser and grammar to capture copyright
statements

	Identify packaged code and collect metadata from packages by parsing the
manifest and lockfiles (and in some cases also the installed databases for
system packages) for these package types: .ABOUT, Alpine Linux apk as packages
or installed, Android apk, Autotools, Bazel, JS Bower, Buck, Msft Cab, Rust
Cargo, Chef, Chrome, PHP Composer, Conda, Perl CPAN, R CRAN, Debian deb as
packages or installed, Apple dmg, Java EAR, FreeBSD, Ruby Gem, Go modules,
Haxe, InstallShield, iOS ipa, ISO disk images, Apache IVY, Java JAR, JBoss
SAR, Maven, JS Meteor, Mozilla Extension, Msft MSI, JS npm, NSIS Installer,
NuGet, Ocaml OPAM, Cocoapods, Dart Pub, Python PyPI wheel and related,
structured README, RPMs as packages or installed, Shell archive, Squashfs,
Java WAR, Msft Update Manifest, and Windows Executable.

	Report the results in the formats of your choice (JSON, YAML, CSV, SPDX, etc.)
for integration with other tools

ScanCode is written in Python and also uses other open source packages.

Alternative?

There are several utilities that do some of what ScanCode does - for instance
you can grep files for copyright and license text. This may work well for simple
cases - e.g. at the single whole license text files and well structured
copyright statements, but we created ScanCode for ourselves because this
approach does not help you to see the recurring patterns of licenses and other
origin history clues at scale.

You can consider other tools such as:

	FOSSology (open source, written in C, Linux only, GPL-licensed)

History

ScanCode was originally created by nexB to support our software audit consulting
services. We have used and continuously enhanced the underlying toolkit for over
12 years. We decided to release ScanCode as open source software to give
software development teams the opportunity to perform as much of the software
audit function as they like on their own.

Thank you for giving ScanCode a try!

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	Reference Docs

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Comprehensive Installation

The recommended way to install ScanCode is using app archives:

	Installation as an Application: Downloading Releases

The recommended method is to download the latest application release as an
application and then configure and use directly. No knowledge of pip/git or
other developer tools is necessary. You only need to install Python then
download and extract the ScanCode application archive to run ScanCode.
For standard usage that’s all you need.

For advanced usage and experienced users, you can also use any of these mode:

	Installation via Docker:

An alternative to installing the latest Scancode Toolkit release natively is
to build a Docker image from the included Dockerfile. The only prerequisite
is a working Docker installation.

	Installation from Source Code: Git Clone

You can clone the git source code repository and then run the configure script
to configure and install ScanCode for local and development usage.

	Installation as a library: via pip

To use ScanCode as a library in your application, you can install it via
pip. This is recommended for developers or users familiar with Python
that want to embed ScanCode as a library.

Before Installing

	ScanCode requires a Python version between 3.8 to 3.12 and is
tested on Linux, macOS, and Windows. It should work fine on FreeBSD.

System Requirements

	Hardware : ScanCode will run best with a modern X86 64 bits processor and at
least 8GB of RAM and 2GB of disk space. These are minimum requirements.

	Supported operating systems: ScanCode should run on these 64-bit OSes running
X86_64 processors:

	Linux: on recent 64-bit Linux distributions,

	Mac: on recent x86 64-bit macOS (10.15 and up, including 11 and 12),
Use the X86 emulation mode on Apple ARM M1 CPUs.
(Note that pip install does not work on ARM CPUs)

	Windows: on Windows 10 and up,

	FreeBSD.

Prerequisites

ScanCode needs a Python 3.8+ interpreter; We support all Python versions from
3.8 to 3.12. The default version for the application archives is Python 3.8

	On Linux:

Use your package manager to install python3.

For Ubuntu, it is sudo apt install python3-dev

	On Ubuntu 16, 18, 20 and 22 run:

sudo apt install python-dev bzip2 xz-utils zlib1g libxml2-dev libxslt1-dev libpopt0

	On Debian and Debian-based distros run:

sudo apt-get install python3-dev libbz2-1.0 xz-utils zlib1g libxml2-dev libxslt1-dev libpopt0

	On RPM-based distros run:

sudo yum install python3.8-devel zlib bzip2-libs xz-libs libxml2-devel libxslt-devel libpopt0

	On Fedora 22 and later run:

sudo dnf install python3.8-devel xz-libs zlib libxml2-devel libxslt-devel bzip2-libs libpopt0

If these packages are not available from your package manager, you must
compile them from sources.

	On Mac:

The default Python 3 provided with macOS is 3.8.
Alternatively you can download and install Python 3.8 from https://www.python.org/

	On Windows:

Download and install Python 3.8 from https://www.python.org/

Note

64-bit Python interpreters (x86-64) are the only interpreters supported by
Scancode on all operating systems which means only 64-bit Windows is supported.

See the Installation on Windows 10 section for more installation details.

Installation as an Application: Downloading Releases

Get the Scancode Toolkit tarball archive of a specific version and your
operating system by going to the project releases page [https://github.com/nexB/scancode-toolkit/releases/]

For example, Version 30.0.1 archive can be obtained from
Toolkit release 30.0.1 [https://github.com/nexB/scancode-toolkit/releases/tag/v30.0.1]
under assets options.

Note

ScanCode app archives come with packaged with all required dependencies except
for Python that has to be downloaded and installed separately.
On more recent versions of Ubuntu, you will have to install Python 3.8 manually.
One possibility is to use the Deadsnakes PPA (Personal Package Archive) which is
a project that provides older Python version builds for Debian and Ubuntu and is
available at https://github.com/deadsnakes/ and https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa

sudo apt-get update && sudo apt-get upgrade
sudo add-apt-repository ppa:deadsnakes/ppa --yes
sudo apt-get install python3.8 python3.8-distutils

Installation on Linux and Mac

Download the archive for your operating systen and extract
the archive from command line:

tar -xvf scancode-toolkit-30.0.1_py38-linux.tar.gz

Or, on Linux, right click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal
in the extracted directory and run:

./scancode --help

This will configure ScanCode and display the command line Help text.

Installation on Windows 10

	Download the latest ScanCode release zip file for Windows from the latest
version at https://github.com/nexB/scancode-toolkit/releases/

	In the File Explorer, select the downloaded ScanCode zip and right-click.

	In the pop-up menu select ‘Extract All…’

	In the pop-up window ‘Extract Compressed (Zipped) Folders’ use the default options to extract.

	Once the extraction is complete, a new File Explorer window will pop up.

	In this Explorer window, select the new folder that was created and right-click.

Note

On Windows 10, double-click the new folder, select one of the files inside the folder
(e.g., ‘setup.py’), and right-click.

	In the pop-up menu select ‘Properties’.

	In the pop-up window ‘Properties’, select the Location value. Copy this to the clipboard and
close the ‘Properties’ window.

	Press the start menu button, click the search box or search icon in the taskbar.

	In the search box type:

cmd

	Select ‘cmd.exe’ or ‘Command Prompt’ listed in the search results.

	A new ‘Command Prompt’pops up.

	In this window (aka a ‘command prompt’), type ‘cd’ followed by a space and
then Right-click in this window and select Paste. This will paste the path you
copied before and is where you extracted ScanCode:

cd path/to/extracted/ScanCode

	Press Enter.

	This will change the current location of your command prompt to the root directory where
ScanCode is installed.

	Then type:

scancode -h

	Press enter. This first command will configure your ScanCode installation.
Several messages are displayed followed by the ScanCode command help.

	The installation is complete.

Un-installation

	Delete the directory in which you extracted ScanCode.

	Delete any temporary files created in your system temp and user temp directory
under a ScanCode-prefixed directory such as .scancode-tk or .cache/scancode-tk.

Installation via Docker:

You can install Scancode Toolkit by building a Docker image from the included Dockerfile.
The prerequisite is a working docker installation [https://docs.docker.com/engine/install/].

Download the ScanCode-Toolkit Source Code

	git clone https://github.com/nexB/scancode-toolkit to get the latest
(Installation from Source Code: Git Clone) source code.

Build the Docker image

Run the docker build source code checkout directory.:

cd scancode-toolkit
docker build --tag scancode-toolkit --tag scancode-toolkit:$(git describe --tags) .

Run using Docker

The docker image will forward all arguments it receives directly to the scancode command.

Display help:

docker run scancode-toolkit --help

Mount current working directory as “/project” and run a scan on a file name
apache-2.0.LICENSE directory. The JSON results will be in scan-result.json:

docker run -v $PWD/:/project scancode-toolkit -clipeu --json-pp /project/scan-result.json /project/apache-2.0.LICENSE

This will mount your current working from the host into /project in the container
and then scan the contents. The output result.json will be written back to your
current working directory on the host.

Note that the parameters before scancode-toolkit are used for docker,
those after will be forwarded to scancode.

Installation from Source Code: Git Clone

You can download the Scancode Toolkit Source Code and build from it yourself.
This is what you would want to do it if:

	You are developing ScanCode or adding new patches or want to run tests.

	You want to test or run a specific version/checkpoint/branch from the version control.

Download the ScanCode-Toolkit Source Code

Run the following once you have Git [https://git-scm.com/] installed:

git clone https://github.com/nexB/scancode-toolkit.git
cd scancode-toolkit

Configure the build

ScanCode use a configure scripts to create an isolated virtual environment,
install required packaged dependencies.

On Linux/Mac:

	Open a terminal

	cd to the clone directory

	run ./configure

	run source venv/bin/activate

On Windows:

	open a command prompt

	cd to the clone directory

	run configure

	run venv\Scripts\activate

Now you are ready to use the freshly configured scancode-toolkit.

Note

For use in development, run instead configure --dev. If your face
issues while configuring a previous version, configure --clean to
clean and reset your enviroment. You will need to run configure again.

Installation as a library: via pip

ScanCode can be installed from the public PyPI repository using pip which
the standard Python package management tool.

Note

Note that pip installation method does work on ARM chips, i.e. Linux/MacOS on
Apple M1 chips, as some non-native dependencies do not have pre-built wheels
for ARM (like py-ahocorasick, intbitset). See System Requirements for
more information. See related issues for more info:

	Fallback pure-python deps [https://github.com/nexB/scancode-toolkit/issues/3210]

	pip install failing on M1 [https://github.com/nexB/scancode-toolkit/issues/3205]

The steps are:

	Create a Python virtual environment:

/usr/bin/python3 -m venv venv

For more information on Python virtualenv, visit this
page [https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv].

	Activate the virtual environment you just created:

source venv/bin/activate

	Run pip to install the latest versions of base utilities:

pip install --upgrade pip setuptools wheel

	Install the latest version of ScanCode:

pip install scancode-toolkit

Note

For advanced usage, scancode-toolkit-mini is an alternative package with
no default dependencies on pre-built binaries. This may come handy for some
special use cases such as packaging for a Linux or FreeBSD distro.

To uninstall, run:

pip uninstall scancode-toolkit

Command Invocation Variations

These are the commands to invoke ScanCode based on:

	your installation methods

	your operating systems

The two form of commands are:

	Use the scancode command directly, typically on Windows or in an activated virtualenv:

scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

	Use a path to the scancode command, typically with an application installation

path/to/scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

These variations are summed up in the following table:

	Installation Methods

	Application Install

	Pip Install

	Install from Source Code

	Linux

	path: ./scancode

	direct: scancode

	path: ./scancode or direct: scancode

	Mac

	path: ./scancode

	direct: scancode

	path: ./scancode or direct: scancode

	Windows

	path: scancode

	direct: scancode

	path: scancode or direct: scancode

Are you new to Scancode-Toolkit?

This is the perfect place to start, if you are new to ScanCode-Toolkit. Have a quick look at the
table of contents below, as these are the main sections you might need help on. These sections
have extensive links to other important documentation pages, and make sure you go through them
all.

Table of Contents

	Try ScanCode Toolkit

	Before you start using ScanCode

	Installing ScanCode

	Scan a Codebase

	Use ScanCode Better

	All Tutorials/How-Tos

	ScanCode Versions

	Learn more about ScanCode Toolkit

	CLI Reference

	How Scancode Works

	Plugins

	Contribute

	General Information

	Contribute Code

	Good First Issues

	Add new Functionality/Enhancement to ScanCode

	Update our Documentation

	Participate in GSoC/GSoD

Try ScanCode Toolkit

This section is about using the ScanCode Toolkit, i.e. Performing a scan on a codebase/files to
determine their license, copyrights and other information, according to your requirements.

	The Scan a Codebase section helps you with configuring your virtual environment,
installing Scancode and performing a basic scan, and subsequently visualize the results.

	The Use ScanCode Better section helps you customize the scan according to your
requirements, and better understand the advanced features you can use.

	The All Tutorials/How-Tos is essentially an exhaustive list of all Tutorials and How To’s
with a brief description on what they help you to achieve.

Installing ScanCode

Scancode-Toolkit can be installed in 3 different methods.

	The Scan a Codebase section helps you with configuring and
installing ScanCode and performing a basic scan, and then visualizing the
results.

	The Use ScanCode Better section helps you customize the scan
according to your requirements, and better understand advanced features.

	The All Tutorials/How-Tos is an exhaustive directory of all Tutorials
and How To’s with a brief description.

Before you start using ScanCode

	You need to make sure Prerequisites are installed, and a virtualenv [https://docs.python-guide.org/dev/virtualenvs/]
is created.

Installation as an Application: Downloading Releases
Installation via Docker:
Installation as a library: via pip
Installation from Source Code: Git Clone

	Now you can either follow the instructions for the recommended Installation as an Application: Downloading Releases method ,
or run pip install scancode-toolkit[full] like that in the Installation as a library: via pip documentation.
Alternatively, you can also Installation from Source Code: Git Clone.

	Run scancode -h to make sure Scancode was installed properly.
If this shows any Error, refer the Common Installation Errors Issue [https://github.com/nexB/scancode-toolkit/issues/1837]
for common errors.

Note

Refer Quickstart to make sure you are using the scan command correctly.

Note

For Windows, Refer to Installation on Windows 10 for installing easily using Releases.

Scan a Codebase

Once you are all set up with Scancode Toolkit, i.e. Running scancode -h shows the
Help text, you can start scanning files or a codebase.

	Refer Quickstart for commonly used scan commands, and commonly used
Output Formats. (The recommended output format is JSON)

	Refer this section for Extractcode Options.

	How to Run a Scan is a sample tutorial for absolute beginners, to walk them through the
process of running a scan. Follow this tutorial and perform a scan on the sample folder
distributed with ScanCode, or any file/folder of your choice. Avoid advanced options, and just
follow the basic instructions.

	ScanCode generates output files with scan results. You can visualize JSON result files using
Scancode Workbench [https://github.com/nexB/scancode-workbench]. Follow this tutorial How to Visualize Scan results
to visualize the scan results.

Use ScanCode Better

	Go through all the options in the page All Available Options, to know about Scancode Command
Line options. You can then modify the Scan according to your requirements.

All Tutorials/How-Tos

The Tutorials are:

	How to Run a Scan

	How to Visualize Scan results

	How to set what will be detected in Scan

	How To Extract Archives

	How to specify Scancode Output Format

	Add A Post-Scan Plugin

The How-To’s are:

	How To Add a New License for Detection

	How to Add New License Rules for Enhanced Detection

ScanCode Versions

	You can see all Scancode Toolkit versions on the GitHub release page [https://github.com/nexB/scancode-toolkit/releases].

	Read the CHANGELOG [https://github.com/nexB/scancode-toolkit/blob/develop/CHANGELOG.rst] for more information on specific releases.

	If you want to use/test a specific version of Scancode Toolkit, you can follow the instructions
in Installation from Source Code: Git Clone docs.

Learn more about ScanCode Toolkit

Here we give an introduction on the Scancode Toolkit Documentation Sections that can help you to
learn more about Scancode Toolkit.

CLI Reference

This section contains a complete guide to ScanCode Toolkit Command Line options, i.e. What the
command-line options are, how different options affect the scan and outputs, how to use these
options and examples of their use cases.

Now this section has three types of pages:

	The Synopsis page and the How to Run a Scan page as summaries.

	An exhaustive list of all Command Line Options at All Available Options

	All the other pages detailing the Type of Options

Note that the page for one type of options also has a short list of all the options detailed on
that page in the beginning. The All Available Options page just has all of them together, and
also the extractcode options.

How Scancode Works

This section has documentation on How does ScanCode detect licenses?.

Plugins

Plugins are an integral part of ScanCode Toolkit in the sense they are used to easily extend
Scancode capabilities, and developers can code their own plugins according to their requirements.

This section has documentation on:

	The Plugin Architecture

	The License Policy Plugin

	All Plugin Tutorials

Contribute

If you are looking to Contribute to Scancode Toolkit, this is where you start.

General Information

	Also refer the Contribution [https://github.com/nexB/scancode-toolkit/blob/develop/CONTRIBUTING.rst] page here.

	For more Project Ideas, refer Contributor Project Ideas (old) [https://aboutcode.readthedocs.io/en/latest/archive/contributor_project_ideas.html#contributor-project-ideas].

	Before committing your work, make sure you have read this post on Writing good Commit Messages [https://aboutcode.readthedocs.io/en/latest/contributing/writing_good_commit_messages.html#good-commit-messages].

Contribute Code

If you haven’t contributed to Scancode Toolkit refer Good First Issues.

To determine where to contribute, you can refer:

	ScanCode Toolkit tracks issues via the GitHub Issue tracker [https://github.com/nexB/scancode-toolkit/issues]

	Broad milestones [https://github.com/nexB/scancode-toolkit/milestones] for upcoming versions are also maintained.

And documentation related to contributing code can be referred at Contributing to Code Development.

Good First Issues

A good first issue [https://github.com/nexB/scancode-toolkit/labels/good%20first%20issue]
means it’s recommended for people who haven’t contributed to Scancode Toolkit before.

Add new Functionality/Enhancement to ScanCode

There are two main paths you can follow to add a new functionality to Scancode.
They are:

	Add the functionality to Scancode itself.

	Add plugins if the functionality is very much application dependent.

Refer enhancement issues [https://github.com/nexB/scancode-toolkit/labels/enhancement] for the first type of
enhancements. If you want to add a plugin to implement the functionality, refer all the
Plugin Tutorials.

Update our Documentation

Maintaining a comprehensive, accurate, updated and effective documentation is very important
as that directly affects the acceptability of Scancode Toolkit.

To contribute to Scancode Toolkit Documentation, first refer the Contributing to the Documentation section.

The sections in this page cover the following:

	Setup Local Build

	Share Document Improvements

	Continuous Integration system for the Documentation

	Style Checks Using Doc8

	Interspinx

	Style Conventions for the Documentaion

You can contribute to the following Open Issues on documentation.

	First Timers Only Issues List [https://github.com/nexB/scancode-toolkit/issues/1826]

	Documentation Inconsistencies Tracker [https://github.com/nexB/scancode-toolkit/issues/1813]

	ScanCode Toolkit Documentation Roadmap [https://github.com/nexB/scancode-toolkit/issues/1824]

	Issues with label Documentation [https://github.com/nexB/scancode-toolkit/issues?q=is%3Aopen+is%3Aissue+label%3Adocumentation]

Note

Refer Something Missing? to report Documentation Errors or to request Improvements.

Also, consider contributing to other Aboutcode Project Documentations, as they need more support.

Participate in GSoC/GSoD

If you want to participate in any of the two programs:

	Google Summer of Code [https://summerofcode.withgoogle.com]

	Google Season of Docs [https://developers.google.com/season-of-docs]

Then:

	Keep an eye out for Application Timelines.

	Solve multiple of these Good First Issues to demonstrate your skills,
and improve your chances of selection.

	Refer to the Projects Ideas List for details on tentative projects.

	GSoC2023 [https://github.com/nexB/aboutcode/wiki/GSOC-2023]

	Remain active in Element and talk with the organization mentors well ahead of the deadlines.

	Select projects according to your skills and finalize project proposals.

	Discuss your proposals extensively with corresponding mentors.

	Apply for the Programs well before the Deadline.

Command Line Interface Reference

	Synopsis
	Installation

	Quickstart

	Type of Options

	Output Formats

	Other Important Documentation

	Getting Help from the Command Line
	All Documentation/Help Options

	Help text

	Command Examples Text

	Plugins Help Text

	--list-packages Option

	--print-options Option

	All Available Options
	All “Basic” Scan Options

	All Extractcode Options

	scancode-reindex-licenses Usage

	Options

	All “Core” Scan Options

	All Scan Output Options

	All “Output Control” Scan Options

	All “Pre-Scan” Options

	All “Post-Scan” Options

	How to Run a Scan
	Prerequisites

	Looking into Files

	Performing Extraction

	Deciding Scan Options

	Running The Scan

	Other Important Documentation

	Other available CLIs
	scancode-reindex-licenses Usage

	Options

	All Extractcode Options

	scancode-reindex-licenses command

	Basic Options
	All “Basic” Scan Options

	--copyright Option

	--license Option

	--package Option

	--info Option

	--email Option

	--url Option

	--generated Option

	--max-email Option

	--max-url Option

	--license-score Option

	--license-text Option

	--license-url-template Option

	--license-text-diagnostics Option

	--license-diagnostics Option

	Core Options
	All “Core” Scan Options

	Comparing Progress Message Options

	--timeout Option

	--from-json Option

	--max-in-memory Option

	--max_depth Option

	Scancode Output Formats
	All Scan Output Options

	Print to stdout (Terminal)

	--json FILE

	--json-pp FILE

	--json-lines FILE

	Comparing Different json Output Formats

	--spdx-rdf FILE

	--spdx-tv FILE

	--html FILE

	--html-app FILE

	--csv FILE

	--cyclonedx FILE

	--cyclonedx-xml FILE

	Custom Output Format

	Controlling Scancode Output and Filters
	All “Output Control” Scan Options

	--strip-root Vs. --full-root

	--ignore-author <pattern> Option

	--ignore-copyright-holder <pattern> Option

	--only-findings Plugin

	Pre-Scan Options
	All “Pre-Scan” Options

	--ignore Option

	--include Option

	--classify

	--facet Option

	Glob Pattern Matching

	What is a Facet?

	Post-Scan Options
	All “Post-Scan” Options

	--mark-source Option

	--consolidate Option

	--filter-clues Option

	--license-clarity-score Option

	--license-policy FILE Option

	--license-references Option

	--summary Option

	--tallies Option

	--tallies-by-facet Option

	--tallies-key-files Option

	--tallies-with-details Option

Synopsis

ScanCode detects licenses, copyrights, package manifests and direct dependencies and more, both
in source code and binary files, by scanning the files. This page introduces you to the ScanCode
Toolkit Command Line Interface in the following sections:

	Installation

	Quickstart

	Type of Options

	Output Formats

	Other Important Documentation

Installation

Scancode-Toolkit installation can be done by downloading ScanCode as an application, which
is recommended generally. For users who wish to use ScanCode as a library, it can be
installed via pip, the default Python Package Manager. Refer the following sections for
detailed Instructions on the each of the Installation Methods.

	Installation as an Application: Downloading Releases

	Installation as a library: via pip

	Installation from Source Code: Git Clone

Quickstart

The basic command to perform a scan, in case of a download and configure installation
(on Linux/MacOS) is:

path/to/scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

The basic usage, if Scancode is installed from pip, or in Windows:

scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

Here Scancode scans the <SCAN INPUT> file or directory for license, origin and packages and saves
results to FILE(s) using one or more output format option. Error and progress are printed to
stdout.

To scan the samples directory distributed with ScanCode-Toolkit, the command will be:

scancode -clpieu --json-pp path/to/output.json path/to/samples

Note

The <OUTPUT FORMAT OPTION(s)> includes both the output option and output file name.
For example in the command scancode -clpieu --json-pp output.json samples,
--json-pp output.json is <OUTPUT FORMAT OPTION(s)>.

Warning

There isn’t a “Default” output option in Versions 3.x onwards, you have to
specify <OUTPUT FORMAT OPTION(s)> explicitly.

Alternatively, in case of download and configure installations, where path/to/scancode is used
(the path from root of file system) we can go into the scancode directory
(like scancode-toolkit-3.1.1) and then use ./scancode. The same applies for input and
output options. To scan a folder samples inside ScanCode directory, and output to a file
output.json in the same directory, the command will be:

./scancode -clpieu --json-pp output.json samples

While a scan using absolute paths from the file system root will look like:

home/ayansm/software/scancode-toolkit-3.1.1/scancode -clpieu --json-pp home/ayansm/scan_scan_results/output.json home/ayansm/codebases/samples/

Commands similar to scancode -clpi --json-pp output.json samples will be used as examples
throughout the documentation.

	Here we are inside the virtualenv where Scancode-Toolkit is configured.

	And the default samples folder is being scanned, which is distributed by default with
Scancode-Toolkit.

Type of Options

ScanCode Toolkit Command Line options can be divided into these major sections:

	All “Basic” Scan Options

	Extractcode Options

	All “Core” Scan Options

	Controlling Scancode Output and Filters

	Pre-Scan Options

	Post-Scan Options

Refer the individual pages which are linked to above, for detailed discussions on the Command
Line Options listed under each section.

Output Formats

The output file format is set by using the various output options. The recommended output format
is JSON. If --json is used, the entire file being in one line, without whitespace characters.

The following example scans will show you how to run a scan with each of the result formats. For
the scans, we will use the samples directory provided with the ScanCode Toolkit.

Tip

You can also output to stdout instead of a file. For more information refer
Print to stdout (Terminal).

JSON file output

Scan the samples directory and save the scan to a JSON file (pretty-printed)::

scancode -clpieu --json-pp output.json samples

A sample JSON output file structure will look like:

{
 "headers": [
 {
 "tool_name": "scancode-toolkit",
 "tool_version": "3.1.1",
 "options": {
 "input": [
 "samples/"
],
 "--copyright": true,
 "--email": true,
 "--info": true,
 "--json-pp": "output.json",
 "--license": true,
 "--package": true,
 "--url": true
 },
 "notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.",
 "start_timestamp": "2019-10-19T191117.292858",
 "end_timestamp": "2019-10-19T191219.743133",
 "message": null,
 "errors": [],
 "extra_data": {
 "files_count": 36
 }
 }
],
 "files": [
 {
 "path": "samples",
 "type": "directory",
 ...
 ...
 ...
 "scan_errors": []
 },
 {
 "path": "samples/README",
 "type": "file",
 "name": "README",
 "base_name": "README",
 "extension": "",
 "size": 236,
 "date": "2019-02-12",
 "sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
 "md5": "effc6856ef85a9250fb1a470792b3f38",
 "mime_type": "text/plain",
 "file_type": "ASCII text",
 "programming_language": null,
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "licenses": [],
 "license_expressions": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
 },
 ...
 ...
 ...
 {
 "path": "samples/zlib/iostream2/zstream_test.cpp",
 "type": "file",
 "name": "zstream_test.cpp",
 "base_name": "zstream_test",
 "extension": ".cpp",
 "size": 711,
 "date": "2019-02-12",
 ...
 ...
 ...
 "scan_errors": []
 }
]
}

A sample JSON output for an individual file will look like:

{
 "path": "samples/zlib/iostream2/zstream.h",
 "type": "file",
 "name": "zstream.h",
 "base_name": "zstream",
 "extension": ".h",
 "size": 9283,
 "date": "2019-02-12",
 "sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
 "md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
 "mime_type": "text/x-c++",
 "file_type": "C++ source, ASCII text",
 "programming_language": "C++",
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": true,
 "is_script": false,
 "licenses": [
 {
 "key": "mit-old-style",
 "score": 100.0,
 "name": "MIT Old Style",
 "short_name": "MIT Old Style",
 "category": "Permissive",
 "is_exception": false,
 "is_unknown": false,
 "owner": "MIT",
 "homepage_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "text_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:mit-old-style",
 "spdx_license_key": null,
 "spdx_url": null,
 "start_line": 9,
 "end_line": 15,
 "matched_rule": {
 "identifier": "mit-old-style_cmr-no_1.RULE",
 "license_expression": "mit-old-style",
 "licenses": [
 "mit-old-style"
],
 "is_license_text": true,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": false,
 "matcher": "2-aho",
 "rule_length": 71,
 "matched_length": 71,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
 }
],
 "license_expressions": [
 "mit-old-style"
],
 "copyrights": [
 {
 "copyright": "Copyright (c) 1997 Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "holders": [
 {
 "holder": "Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [
 {
 "url": "http://www.cmr.no/",
 "start_line": 7,
 "end_line": 7
 }
],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

Static HTML output

Scan the samples directory for licenses and copyrights and save the scan results to an HTML
file. When the scan is done, open samples.html in your web browser.

scancode -clpieu --html output.html samples

[image: ../_images/scancode-toolkit-static-html1.png]
[image: ../_images/scancode-toolkit-static-html2.png]

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	Reference Docs

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Getting Help from the Command Line

ScanCode-Toolkit Command Line Interface can help you to search for specific options or use cases
from the command line itself. These are two options are --help and --examples, and are
very helpful if you need a quick glance of the options or use cases. Or it can be useful when you
can’t access, the more elaborate online documentation.

All Documentation/Help Options

	-h, --help

	Show the Help text and exit.

	--examples

	Show the Command Examples Text and exit.

	-A, --about

	Show information about ScanCode and licensing
and exit.

	-V, --version

	Show the version and exit.

	--list-packages

	Show the list of supported package types and exit.

	--plugins

	Show the list of available ScanCode plugins and exit.

	--print-options

	Show the list of selected options and exit.

Help text

The Scancode-Toolkit Command Line Interface has a Help option displaying all the options. It also
displays basic usage, and some simple examples. The command line option for this is --help.

Tip

You can also use the shorter -h option, which does the same.

To see the help text from the Terminal, execute the following command:

$ scancode --help

The Following Help Text is displayed, i.e. This is the help text for Scancode Version 32.0.0:

Usage: scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <input>...

 scan the <input> file or directory for license, origin and packages and save
 results to FILE(s) using one or more output format option.

 Error and progress are printed to stderr.

Options:

 primary scans:
 -l, --license Scan <input> for licenses.
 -p, --package Scan <input> for application package and dependency
 manifests, lockfiles and related data.
 --system-package Scan <input> for installed system package databases.
 -c, --copyright Scan <input> for copyrights.

 other scans:
 -i, --info Scan <input> for file information (size, checksums, etc).
 --generated Classify automatically generated code files with a flag.
 -e, --email Scan <input> for emails.
 -u, --url Scan <input> for urls.

 scan options:
 --license-diagnostics In license detections, include diagnostic details
 to figure out the license detection post
 processing steps applied.
 --license-score INTEGER Do not return license matches with a score lower
 than this score. A number between 0 and 100.
 [default: 0]
 --license-text Include the detected licenses matched text.
 --license-text-diagnostics In the matched license text, include diagnostic
 highlights surrounding with square brackets []
 words that are not matched.
 --license-url-template TEXT Set the template URL used for the license
 reference URLs. Curly braces ({}) are replaced by
 the license key. [default: https://scancode-
 licensedb.aboutcode.org/{}]
 --max-email INT Report only up to INT emails found in a file. Use
 0 for no limit. [default: 50]
 --max-url INT Report only up to INT urls found in a file. Use 0
 for no limit. [default: 50]
 --unknown-licenses [EXPERIMENTAL] Detect unknown licenses.

 output formats:
 --json FILE Write scan output as compact JSON to FILE.
 --json-pp FILE Write scan output as pretty-printed JSON to FILE.
 --json-lines FILE Write scan output as JSON Lines to FILE.
 --yaml FILE Write scan output as YAML to FILE.
 --csv FILE [DEPRECATED] Write scan output as CSV to FILE. The
 --csv option is deprecated and will be replaced by new
 CSV and tabular output formats in the next ScanCode
 release. Visit https://github.com/nexB/scancode-
 toolkit/issues/3043 to provide inputs and feedback.
 --html FILE Write scan output as HTML to FILE.
 --custom-output FILE Write scan output to FILE formatted with the custom
 Jinja template file.
 --debian FILE Write scan output in machine-readable Debian copyright
 format to FILE.
 --custom-template FILE Use this Jinja template FILE as a custom template.
 --cyclonedx FILE Write scan output in CycloneDX JSON format to FILE.
 --cyclonedx-xml FILE Write scan output in CycloneDX XML format to FILE.
 --spdx-rdf FILE Write scan output as SPDX RDF to FILE.
 --spdx-tv FILE Write scan output as SPDX Tag/Value to FILE.
 --html-app FILE (DEPRECATED: use the ScanCode Workbench app instead)
 Write scan output as a mini HTML application to FILE.

 output filters:
 --ignore-author <pattern> Ignore a file (and all its findings) if an
 author contains a match to the <pattern>
 regular expression. Note that this will ignore
 a file even if it has other findings such as a
 license or errors.
 --ignore-copyright-holder <pattern> Ignore a file (and all its findings) if a
 copyright holder contains a match to the
 <pattern> regular expression. Note that this
 will ignore a file even if it has other
 scanned data such as a license or errors.
 --only-findings Only return files or directories with findings
 for the requested scans. Files and directories
 without findings are omitted (file information
 is not treated as findings).

 output control:
 --full-root Report full, absolute paths.
 --strip-root Strip the root directory segment of all paths. The default is to
 always include the last directory segment of the scanned path
 such that all paths have a common root directory.

 pre-scan:
 --ignore <pattern> Ignore files matching <pattern>.
 --include <pattern> Include files matching <pattern>.
 --classify Classify files with flags indicating whether the file is a
 legal, readme, test or similar file.
 --facet <facet>=<pattern> Add the <facet> to files with a path matching
 <pattern>.

 post-scan:
 --consolidate Group resources by Packages or license and copyright
 holder and return those groupings as a list of
 consolidated packages and a list of consolidated
 components. This requires the scan to have/be run
 with the copyright, license, and package options
 active
 --filter-clues Filter redundant duplicated clues already contained
 in detected license and copyright texts and notices.
 --license-clarity-score Compute a summary license clarity score at the
 codebase level.
 --license-policy FILE Load a License Policy file and apply it to the scan
 at the Resource level.
 --license-references Return reference data for all licenses and license
 rules present in detections.
 --mark-source Set the "is_source" to true for directories that
 contain over 90% of source files as children and
 descendants. Count the number of source files in a
 directory as a new source_file_counts attribute
 --summary Summarize scans by providing declared origin
 information and other detected origin info at the
 codebase attribute level.
 --tallies Compute tallies for license, copyright and other
 scans at the codebase level.
 --tallies-by-facet Compute tallies for license, copyright and other
 scans and group the results by facet.
 --tallies-key-files Compute tallies for license, copyright and other
 scans for key, top-level files. Key files are top-
 level codebase files such as COPYING, README and
 package manifests as reported by the --classify
 option "is_legal", "is_readme", "is_manifest" and
 "is_top_level" flags.
 --tallies-with-details Compute tallies of license, copyright and other scans
 at the codebase level, keeping intermediate details
 at the file and directory level.

 core:
 --timeout <seconds> Stop an unfinished file scan after a timeout in
 seconds. [default: 120 seconds]
 -n, --processes INT Set the number of parallel processes to use. Disable
 parallel processing if 0. Also disable threading if
 -1. [default: 1]
 -q, --quiet Do not print summary or progress.
 -v, --verbose Print progress as file-by-file path instead of a
 progress bar. Print verbose scan counters.
 --from-json Load codebase from one or more <input> JSON scan
 file(s).
 --max-in-memory INTEGER Maximum number of files and directories scan details
 kept in memory during a scan. Additional files and
 directories scan details above this number are cached
 on-disk rather than in memory. Use 0 to use unlimited
 memory and disable on-disk caching. Use -1 to use
 only on-disk caching. [default: 10000]
 --max-depth INTEGER Maximum nesting depth of subdirectories to scan.
 Descend at most INTEGER levels of directories below
 and including the starting directory. Use 0 for no
 scan depth limit.

 documentation:
 -h, --help Show this message and exit.
 -A, --about Show information about ScanCode and licensing and exit.
 -V, --version Show the version and exit.
 --examples Show command examples and exit.
 --list-packages Show the list of supported package manifest parsers and exit.
 --plugins Show the list of available ScanCode plugins and exit.
 --print-options Show the list of selected options and exit.

 Examples (use --examples for more):

 Scan the 'samples' directory for licenses and copyrights.
 Save scan results to the 'scancode_result.json' JSON file:

 scancode --license --copyright --json-pp scancode_result.json samples

 Scan the 'samples' directory for licenses and package manifests. Print scan
 results on screen as pretty-formatted JSON (using the special '-' FILE to print
 to on screen/to stdout):

 scancode --json-pp - --license --package samples

 Note: when you run ScanCode, a progress bar is displayed with a counter of the
 number of files processed. Use --verbose to display file-by-file progress.

Command Examples Text

The Scancode-Toolkit Command Line Interface has an --examples option which displays some basic
examples (more than the basic synopsis in --help). These examples include the following aspects
of code scanning:

	Scanning Single File/Directory

	Output Scan results to stdout (as JSON) or HTML/JSON file

	Scanning for only Copyrights/Licenses

	Ignoring Files

	Using GLOB Patterns to Scan Multiple Files

	Using Verbose Mode

The command line option for displaying these basic examples is --examples.

To see the help text from the Terminal, execute the following command:

$ scancode --examples

The Following Text is displayed, i.e. This is the examples for Scancode Version 3.1.1

Scancode command lines examples:

(Note for Windows: use '\' back slash instead of '/' forward slash for paths.)

Scan a single file for copyrights. Print scan results to stdout as pretty JSON:

 scancode --copyright samples/zlib/zlib.h --json-pp -

Scan a single file for licenses, print verbose progress to stderr as each
file is scanned. Save scan to a JSON file:

 scancode --license --verbose samples/zlib/zlib.h --json licenses.json

Scan a directory explicitly for licenses and copyrights. Redirect JSON scan
results to a file:

 scancode --license --copyright samples/zlib/ --json - > scan.json

Scan a directory while ignoring a single file. Scan for license, copyright and
package manifests. Use four parallel processes.
Print scan results to stdout as pretty formatted JSON.

 scancode -lc --package --ignore README --processes 4 --json-pp - samples/

Scan a directory while ignoring all files with .txt extension.
Print scan results to stdout as pretty formatted JSON.
It is recommended to use quotes around glob patterns to prevent pattern
expansion by the shell:

 scancode --json-pp - --ignore "*.txt" samples/

Special characters supported in GLOB pattern:
- * matches everything
- ? matches any single character
- [seq] matches any character in seq
- [!seq] matches any character not in seq

For a literal match, wrap the meta-characters in brackets.
For example, '[?]' matches the character '?'.
For details on GLOB patterns see https://en.wikipedia.org/wiki/Glob_(programming).

Note: Glob patterns cannot be applied to path as strings.
For example, this will not ignore "samples/JGroups/licenses".

 scancode --json - --ignore "samples*licenses" samples/

Scan a directory while ignoring multiple files (or glob patterns).
Print the scan results to stdout as JSON:

 scancode --json - --ignore README --ignore "*.txt" samples/

Scan a directory for licenses and copyrights. Save scan results to an
HTML file:

 scancode --license --copyright --html scancode_result.html samples/zlib

To extract archives, see the 'extractcode' command instead.

Plugins Help Text

The command line option for displaying all the plugins is:

	--plugins

To see the help text from the Terminal, execute the following command:

$ scancode --plugins

Note

Plugins that are shown by using --plugins include the following:

	Post-Scan Plugins

	Pre-Scan Plugins

	Output Options

	Output Control

	Basic Scan Options

The Following Text is displayed, i.e. This is the available plugins for Scancode Version 31.2.1

--
Plugin: scancode_output:csv class: formattedcode.output_csv:CsvOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: csv: --csv
 help: [DEPRECATED] Write scan output as CSV to FILE. The --csv option is deprecated and will be replaced by new CSV and tabular output formats in the next ScanCode release. Visit https://github.com/nexB/scancode-toolkit/issues/3043 to provide inputs and feedback.
 doc: None

--
Plugin: scancode_output:cyclonedx class: formattedcode.output_cyclonedx:CycloneDxJsonOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_cyclonedx_json: --cyclonedx
 help: Write scan output in CycloneDX JSON format to FILE.
 doc:
 Output plugin to write scan results in CycloneDX JSON format.
 For additional information on the format,
 please see https://cyclonedx.org/specification/overview/

--
Plugin: scancode_output:cyclonedx-xml class: formattedcode.output_cyclonedx:CycloneDxXmlOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_cyclonedx_xml: --cyclonedx-xml
 help: Write scan output in CycloneDX XML format to FILE.
 doc:
 Output plugin to write scan results in CycloneDX XML format.
 For additional information on the format,
 please see https://cyclonedx.org/specification/overview/

--
Plugin: scancode_output:debian class: formattedcode.output_debian:DebianCopyrightOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_debian: --debian
 help: Write scan output in machine-readable Debian copyright format to FILE.
 doc: None

--
Plugin: scancode_output:html class: formattedcode.output_html:HtmlOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: html: --html
 help: Write scan output as HTML to FILE.
 doc: None

--
Plugin: scancode_output:html-app class: formattedcode.output_html:HtmlAppOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: html_app: --html-app
 help: (DEPRECATED: use the ScanCode Workbench app instead)
 Write scan output as a mini HTML application to FILE.
 doc:
 Write scan output as a mini HTML application.

--
Plugin: scancode_output:json class: formattedcode.output_json:JsonCompactOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json: --json
 help: Write scan output as compact JSON to FILE.
 doc: None

--
Plugin: scancode_output:json-pp class: formattedcode.output_json:JsonPrettyOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json_pp: --json-pp
 help: Write scan output as pretty-printed JSON to FILE.
 doc: None

--
Plugin: scancode_output:jsonlines class: formattedcode.output_jsonlines:JsonLinesOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json_lines: --json-lines
 help: Write scan output as JSON Lines to FILE.
 doc: None

--
Plugin: scancode_output:spdx-rdf class: formattedcode.output_spdx:SpdxRdfOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: spdx_rdf: --spdx-rdf
 help: Write scan output as SPDX RDF to FILE.
 doc: None

--
Plugin: scancode_output:spdx-tv class: formattedcode.output_spdx:SpdxTvOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: spdx_tv: --spdx-tv
 help: Write scan output as SPDX Tag/Value to FILE.
 doc: None

--
Plugin: scancode_output:template class: formattedcode.output_html:CustomTemplateOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: custom_output: --custom-output
 help: Write scan output to FILE formatted with the custom Jinja template file.
 help_group: output formats, name: custom_template: --custom-template
 help: Use this Jinja template FILE as a custom template.
 doc: None

--
Plugin: scancode_output:yaml class: formattedcode.output_yaml:YamlOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_yaml: --yaml
 help: Write scan output as YAML to FILE.
 doc: None

--
Plugin: scancode_output_filter:ignore-copyrights class: cluecode.plugin_ignore_copyrights:IgnoreCopyrights
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output filters, name: ignore_copyright_holder: --ignore-copyright-holder
 help: Ignore a file (and all its findings) if a copyright holder contains a match to the <pattern> regular expression. Note that this will ignore a file even if it has other scanned data such as a license or errors.
 help_group: output filters, name: ignore_author: --ignore-author
 help: Ignore a file (and all its findings) if an author contains a match to the <pattern> regular expression. Note that this will ignore a file even if it has other findings such as a license or errors.
 doc:
 Filter findings that match given copyright holder or author patterns.
 Has no effect unless the --copyright scan is requested.

--
Plugin: scancode_output_filter:only-findings class: scancode.plugin_only_findings:OnlyFindings
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output filters, name: only_findings: --only-findings
 help: Only return files or directories with findings for the requested scans. Files and directories without findings are omitted (file information is not treated as findings).
 doc:
 Filter files or directories without scan findings for the requested scans.

--
Plugin: scancode_post_scan:consolidate class: summarycode.plugin_consolidate:Consolidator
 codebase_attributes: consolidated_components, consolidated_packages
 resource_attributes: consolidated_to
 sort_order: 10
 required_plugins:
 options:
 help_group: post-scan, name: consolidate: --consolidate
 help: Group resources by Packages or license and copyright holder and return those groupings as a list of consolidated packages and a list of consolidated components. This requires the scan to have/be run with the copyright, license, and package options active
 doc:
 A ScanCode post-scan plugin to return consolidated components and consolidated
 packages for different types of codebase summarization.

 A consolidated component is a group of Resources that have the same origin.
 Currently, a ConsolidatedComponent is created for each detected copyright holder
 in a codebase and contains resources that have that particular copyright holder.

 A consolidated package is a detected package in the scanned codebase that has
 been enhanced with data about other licenses and holders found within it.

 If a Resource is part of a consolidated component or consolidated package, then
 the identifier of the consolidated component or consolidated package it is part
 of is in the Resource's ``consolidated_to`` field.

--
Plugin: scancode_post_scan:filter-clues class: cluecode.plugin_filter_clues:RedundantCluesFilter
 codebase_attributes:
 resource_attributes:
 sort_order: 1
 required_plugins:
 options:
 help_group: post-scan, name: filter_clues: --filter-clues
 help: Filter redundant duplicated clues already contained in detected license and copyright texts and notices.
 doc:
 Filter redundant clues (copyrights, authors, emails, and urls) that are
 already contained in a matched license text.

--
Plugin: scancode_post_scan:license-clarity-score class: summarycode.score:LicenseClarityScore
 codebase_attributes: summary
 resource_attributes:
 sort_order: 5
 required_plugins:
 options:
 help_group: post-scan, name: license_clarity_score: --license-clarity-score
 help: Compute a summary license clarity score at the codebase level.
 doc:
 Compute a License clarity score at the codebase level.

--
Plugin: scancode_post_scan:license-policy class: licensedcode.plugin_license_policy:LicensePolicy
 codebase_attributes:
 resource_attributes: license_policy
 sort_order: 9
 required_plugins:
 options:
 help_group: post-scan, name: license_policy: --license-policy
 help: Load a License Policy file and apply it to the scan at the Resource level.
 doc:
 Add the "license_policy" attribute to a resouce if it contains a
 detected license key that is found in the license_policy.yml file

--
Plugin: scancode_post_scan:license-references class: licensedcode.licenses_reference:LicenseReference
 codebase_attributes: license_references, license_rule_references
 resource_attributes:
 sort_order: 1000
 required_plugins:
 options:
 help_group: post-scan, name: license_references: --license-references
 help: Return reference data for all licenses and license rulespresent in detections.
 doc:
 Add license and rule reference data to a scan.

--
Plugin: scancode_post_scan:mark-source class: scancode.plugin_mark_source:MarkSource
 codebase_attributes:
 resource_attributes: source_count
 sort_order: 8
 required_plugins:
 options:
 help_group: post-scan, name: mark_source: --mark-source
 help: Set the "is_source" to true for directories that contain over 90% of source files as children and descendants. Count the number of source files in a directory as a new source_file_counts attribute
 doc:
 Set the "is_source" flag to true for directories that contain
 over 90% of source files as direct children.
 Has no effect unless the --info scan is requested.

--
Plugin: scancode_post_scan:summary class: summarycode.summarizer:ScanSummary
 codebase_attributes: summary
 resource_attributes:
 sort_order: 2
 required_plugins:
 options:
 help_group: post-scan, name: summary: --summary
 help: Summarize scans by providing declared origin information and other detected origin info at the codebase attribute level.
 doc:
 Summarize a scan at the codebase level.

--
Plugin: scancode_post_scan:tallies class: summarycode.tallies:Tallies
 codebase_attributes: tallies
 resource_attributes:
 sort_order: 15
 required_plugins:
 options:
 help_group: post-scan, name: tallies: --tallies
 help: Compute tallies for license, copyright and other scans at the codebase level.
 doc:
 Compute tallies for license, copyright and other scans at the codebase level

--
Plugin: scancode_post_scan:tallies-by-facet class: summarycode.tallies:FacetTallies
 codebase_attributes: tallies_by_facet
 resource_attributes:
 sort_order: 200
 required_plugins:
 options:
 help_group: post-scan, name: tallies_by_facet: --tallies-by-facet
 help: Compute tallies for license, copyright and other scans and group the results by facet.
 doc:
 Compute tallies for a scan at the codebase level, grouping by facets.

--
Plugin: scancode_post_scan:tallies-key-files class: summarycode.tallies:KeyFilesTallies
 codebase_attributes: tallies_of_key_files
 resource_attributes:
 sort_order: 150
 required_plugins:
 options:
 help_group: post-scan, name: tallies_key_files: --tallies-key-files
 help: Compute tallies for license, copyright and other scans for key, top-level files. Key files are top-level codebase files such as COPYING, README and package manifests as reported by the --classify option "is_legal", "is_readme", "is_manifest" and "is_top_level" flags.
 doc:
 Compute tallies of a scan at the codebase level for only key files.

--
Plugin: scancode_post_scan:tallies-with-details class: summarycode.tallies:TalliesWithDetails
 codebase_attributes: tallies
 resource_attributes: tallies
 sort_order: 100
 required_plugins:
 options:
 help_group: post-scan, name: tallies_with_details: --tallies-with-details
 help: Compute tallies of license, copyright and other scans at the codebase level, keeping intermediate details at the file and directory level.
 doc:
 Compute tallies of different scan attributes of a scan at the codebase level and
 keep file and directory details.

 The scan attributes that are tallied are:
 - detected_license_expression
 - copyrights
 - holders
 - authors
 - programming_language
 - packages

--
Plugin: scancode_pre_scan:classify class: summarycode.classify_plugin:FileClassifier
 codebase_attributes:
 resource_attributes: is_legal, is_manifest, is_readme, is_top_level, is_key_file
 sort_order: 30
 required_plugins:
 options:
 help_group: pre-scan, name: classify: --classify
 help: Classify files with flags telling if the file is a legal, or readme or test file, etc.
 doc:
 Classify a file such as a COPYING file or a package manifest with a flag.

--
Plugin: scancode_pre_scan:facet class: summarycode.facet:AddFacet
 codebase_attributes:
 resource_attributes: facets
 sort_order: 20
 required_plugins:
 options:
 help_group: pre-scan, name: facet: --facet
 help: Add the <facet> to files with a path matching <pattern>.
 doc:
 Assign one or more "facet" to each file (and NOT to directories). Facets are
 a way to qualify that some part of the scanned code may be core code vs.
 test vs. data, etc.

--
Plugin: scancode_pre_scan:ignore class: scancode.plugin_ignore:ProcessIgnore
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: pre-scan, name: ignore: --ignore
 help: Ignore files matching <pattern>.
 help_group: pre-scan, name: include: --include
 help: Include files matching <pattern>.
 doc:
 Include or ignore files matching patterns.

--
Plugin: scancode_scan:copyrights class: cluecode.plugin_copyright:CopyrightScanner
 codebase_attributes:
 resource_attributes: copyrights, holders, authors
 sort_order: 6
 required_plugins:
 options:
 help_group: primary scans, name: copyright: -c, --copyright
 help: Scan <input> for copyrights.
 doc:
 Scan a Resource for copyrights.

--
Plugin: scancode_scan:emails class: cluecode.plugin_email:EmailScanner
 codebase_attributes:
 resource_attributes: emails
 sort_order: 7
 required_plugins:
 options:
 help_group: other scans, name: email: -e, --email
 help: Scan <input> for emails.
 help_group: scan options, name: max_email: --max-email
 help: Report only up to INT emails found in a file. Use 0 for no limit.
 doc:
 Scan a Resource for emails.

--
Plugin: scancode_scan:generated class: summarycode.generated:GeneratedCodeDetector
 codebase_attributes:
 resource_attributes: is_generated
 sort_order: 50
 required_plugins:
 options:
 help_group: other scans, name: generated: --generated
 help: Classify automatically generated code files with a flag.
 doc:
 Tag a file as generated.

--
Plugin: scancode_scan:info class: scancode.plugin_info:InfoScanner
 codebase_attributes:
 resource_attributes: date, sha1, md5, sha256, mime_type, file_type, programming_language, is_binary, is_text, is_archive, is_media, is_source, is_script
 sort_order: 0
 required_plugins:
 options:
 help_group: other scans, name: info: -i, --info
 help: Scan <input> for file information (size, checksums, etc).
 doc:
 Scan a file Resource for miscellaneous information such as mime/filetype and
 basic checksums.

--
Plugin: scancode_scan:licenses class: licensedcode.plugin_license:LicenseScanner
 codebase_attributes: license_detections
 resource_attributes: detected_license_expression, detected_license_expression_spdx, license_detections, license_clues, percentage_of_license_text
 sort_order: 4
 required_plugins:
 options:
 help_group: primary scans, name: license: -l, --license
 help: Scan <input> for licenses.
 help_group: scan options, name: license_score: --license-score
 help: Do not return license matches with a score lower than this score. A number between 0 and 100.
 help_group: scan options, name: license_text: --license-text
 help: Include the detected licenses matched text.
 help_group: scan options, name: license_text_diagnostics: --license-text-diagnostics
 help: In the matched license text, include diagnostic highlights surrounding with square brackets [] words that are not matched.
 help_group: scan options, name: license_diagnostics: --license-diagnostics
 help: In license detections, include diagnostic details to figure out the license detection post processing steps applied.
 help_group: scan options, name: license_url_template: --license-url-template
 help: Set the template URL used for the license reference URLs. Curly braces ({}) are replaced by the license key.
 help_group: scan options, name: unknown_licenses: --unknown-licenses
 help: [EXPERIMENTAL] Detect unknown licenses.
 doc:
 Scan a Resource for licenses.

--
Plugin: scancode_scan:packages class: packagedcode.plugin_package:PackageScanner
 codebase_attributes: packages, dependencies
 resource_attributes: package_data, for_packages
 sort_order: 3
 required_plugins: scan:licenses
 options:
 help_group: primary scans, name: package: -p, --package
 help: Scan <input> for application package and dependency manifests, lockfiles and related data.
 help_group: primary scans, name: system_package: --system-package
 help: Scan <input> for installed system package databases.
 help_group: documentation, name: list_packages: --list-packages
 help: Show the list of supported package manifest parsers and exit.
 doc:
 Scan a Resource for Package data and report these as "package_data" at the
 file level. Then create "packages" from these "package_data" at the top
 level.

--
Plugin: scancode_scan:urls class: cluecode.plugin_url:UrlScanner
 codebase_attributes:
 resource_attributes: urls
 sort_order: 8
 required_plugins:
 options:
 help_group: other scans, name: url: -u, --url
 help: Scan <input> for urls.
 help_group: scan options, name: max_url: --max-url
 help: Report only up to INT urls found in a file. Use 0 for no limit.
 doc:
 Scan a Resource for URLs.

--list-packages Option

This shows all the types of packages that can be scanned using Scancode.
These are located in packagedcode i.e. Code used to parse various package formats.

See the Supported package manifests and package datafiles page for more details and documentation
automatically generated using this data.

--print-options Option

This option prints the options selected for one specific scan command.

If we run this command:

scancode -clpieu --json-pp sample.json samples --classify --tallies --tallies-with-details --print-options

The output will be:

Options:
 classify: True
 copyright: True
 email: True
 info: True
 license: True
 list_packages: None
 output_json_pp: <unopened file 'sample.json' wb>
 package: True
 reindex_licenses: None
 tallies: True
 tallies_with_details: True
 url: True

All Available Options

This section contains an exhaustive list of all Scancode options, arranged in various sections.
The sections are as follows:

	Basic Scan Options

	Core Scan Options

	Output Formats

	Controlling Output and Filters

	Pre-Scan Options

	Post-Scan Options

There’s also another section for extractcode options.

The order of the sections and all their options is the same as in the Help text,
available in the command line.

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--license-references

	--license-text

	--license-text-diagnostics

	--license-diagnostics

	--license-url-template TEXT

	--license-score INT

	--license-clarity-score

	--consolidate

	--unknown-licenses

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	--system-package

	Scan <input> for installed system package
databases.

	--package-only

	Scan <input> for system and application
only for package metadata, without license/
copyright detection and package assembly.

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Scan for and include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any combination of these
options are used, ScanCode performs only that specific task, and not the others.
scancode -l scans only for licenses, and doesn’t scan for copyright/packages/general
information/emails/urls. The only notable exception: a --package scan also has
license information for package manifests and top-level packages, which are derived
regardless of --license option being used.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
scancode -c -i -p, you can write scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of: --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of: --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or smaller number of matches).

Sub-Option of: --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of: --license

Sub-Options:

	--license-text-diagnostics

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: default: https://scancode-licensedb.aboutcode.org/{}]

Sub-Option of: --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of: --license and --license-text

	--license-diagnostics

	In license detections, include diagnostic details to figure out the
license detection post processing steps applied.

Sub-Option of: --license

	--unknown-licenses

	[EXPERIMENTAL] Detect unknown licenses.

Sub-Option of: --license

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

extractcode samples

This extracts the zlib.tar.gz package:

[image: ../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

scancode-reindex-licenses Usage

Usage: scancode-reindex-licenses [OPTIONS]

Reindex scancode licenses and exit

Options

	--all-languages

	[EXPERIMENTAL] Rebuild the license index
including texts all languages (and not only
English) and exit.

	--only-builtin

	Rebuild the license index excluding any
additional license directory or additional
license plugins which were added previously, i.e.
with only builtin scancode license and rules.

	--additional-directory DIR

	Include this directory with additional custom
licenses and license rules in the license
detection index.

	--load-dump

	Load all license and rules from their respective
files and then dump them back to those same files.

	-h, --help

	Shows the options and explanations.

All “Core” Scan Options

	-n, --processes INTEGER

	Scan <input> using n parallel processes.
[Default: 1]

	-v, --verbose

	Print verbose file-by-file progress messages.

	-q, --quiet

	Do not print summary or progress messages.

	--timeout FLOAT

	Stop scanning a file if scanning takes longer
than a timeout in seconds. [Default: 120]

	--from-json

	Load codebase from one or more existing JSON scans.

	--max-in-memory INTEGER

	Maximum number of files and directories scan
details kept in memory during a scan.
Additional files and directories scan details
above this number are cached on-disk rather
than in memory. Use 0 to use unlimited memory
and disable on-disk caching. Use -1 to use
only on-disk caching. [Default: 10000]

	--max-depth INTEGER

	Descend at most INTEGER levels of directories
including and below the starting point. INTEGER
must be positive or zero for no limit.
[Default: 0]

All Scan Output Options

	--json FILE

	Write scan output as compact JSON to FILE.

	--json-pp FILE

	Write scan output as pretty-printed JSON to
FILE. This is one of the recommended output
formats and contains all the data scancode
can show along with the YAML output format.

	--json-lines FILE

	Write scan output as JSON Lines to FILE.

	--yaml FILE

	Write scan output as YAML to FILE.
This is one of the recommended output
formats and contains all the data scancode
can show along with the JSON output format.

	--csv FILE

	DEPRECATED: Write scan output as CSV to FILE.
This option is deprecated and will be replaced by
new CSV and tabular output formats in the next
ScanCode release. Visit this issue for details,
and to provide input and feedback:
https://github.com/nexB/scancode-toolkit/issues/3043

	--html FILE

	Write scan output as HTML to FILE.

	--custom-output

	Write scan output to FILE formatted with the
custom Jinja template file.

Mandatory Sub-option:

	--custom-template FILE

	--custom-template FILE

	Use this Jinja template FILE as a custom
template.

Sub-Option of: --custom-output

	--debian FILE

	Write scan output in machine-readable Debian copyright
format to FILE.

	--spdx-rdf FILE

	Write scan output as SPDX RDF to FILE.

	--spdx-tv FILE

	Write scan output as SPDX Tag/Value to FILE.

	--html-app FILE

	[DEPRECATED] Use scancode-workbench
instead. Write scan output as a mini HTML
application to FILE.

	--cyclonedx FILE

	Write scan output as a CycloneDx 1.3 BOM
in pretty-printed JSON format to FILE

	--cyclonedx-xml FILE

	Write scan output as a CycloneDx 1.3 BOM
in pretty-printed XML format to FILE

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

All “Output Control” Scan Options

	--strip-root

	Strip the root directory segment of all paths.

	--full-root

	Report full, absolute paths.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

	--ignore-author <pattern>

	Ignore a file (and all its findings)
if an author contains a match to the
<pattern> regular expression.

	--ignore-copyright-holder <pattern>

	Ignore a file (and all its findings)
if a copyright holder contains a match
to the <pattern> regular expression.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

	--only-findings

	Only return files or directories with
findings for the requested scans.
Files and directories without findings
are omitted (file information is not
treated as findings).

All “Pre-Scan” Options

	--ignore <pattern>

	Ignore files matching <pattern>.

	--include <pattern>

	Include files matching <pattern>.

	--classify

	Classify files with flags telling if the
file is a legal, or readme or test file,
etc.

Sub-Options:

	--license-clarity-score

	--tallies-key-files

	--facet <facet_pattern>

	Here <facet_pattern> represents
<facet>=<pattern>. Add the <facet>
to files with a path matching <pattern>.

Sub-Options:

	--tallies-by-facet

All “Post-Scan” Options

	--mark-source

	Set the “is_source” flag to true for directories that
contain over 90% of source files as direct children
and descendants. Count the number of source files in a
directory as a new “source_file_counts” attribute

Sub-Option of: --url

	--consolidate

	Group resources by Packages or license and
copyright holder and return those groupings
as a list of consolidated packages and a list
of consolidated components.
The –consolidate option will be deprecated in
a future version of scancode-toolkit as top level
packages now provide improved consolidated data.

Sub-Option of: --copyright, --license and
--packages.

	--filter-clues

	Filter redundant duplicated clues already
contained in detected licenses, copyright
texts and notices.

	--license-clarity-score

	Compute a summary license clarity score at
the codebase level.

Sub-Option of: --classify.

	--license-policy FILE

	Load a License Policy file and apply it to
the scan at the Resource level.

	--summary

	Summarize scans by providing declared origin
information and other detected info at the
codebase attribute level.

	--tallies

	Summarize license, copyright and other scans
at the codebase level with occurrence counts.

Sub-Options:

	--tallies-by-facet

	--tallies-key-files

	--tallies-with-details

	--tallies-by-facet

	Summarize license, copyright and other scans
and group the results by facet.

Sub-Option of: --tallies and --facet.

	--tallies-key-files

	Summarize license, copyright and other scans
for key, top-level files, with occurrence counts.
Key files are top-level codebase files such as
COPYING, README and package manifests as reported
by the --classify option: “is_legal”,
“is_readme”, “is_manifest” and “is_top_level”
flags.

Sub-Option of: --classify and --summary.

	--tallies-with-details

	Summarize license, copyright and other scans
at the codebase level with occurrence counts,
while also keeping intermediate details at
the file and directory level.

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed
by default with Scancode.

Prerequisites

Refer to the Comprehensive Installation installation guide.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed
by default with Scancode Toolkit. Here’s the directory structure and respective files:

[image: ../_images/files_sample.png]
We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the
archive before running the scan, to also scan the files inside this package.

Performing Extraction

To extract the packages inside samples directory:

extractcode samples

This extracts the zlib.tar.gz package:

[image: ../_images/extractcode.png]

Note

Use the --shallow option to prevent recursive extraction of nested archives.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan,
according to your requirements.

	The basic scan options, i.e. -c or --copyright, -l or --license,
-p or --package, -e or --email, -u or --url, and -i
or --info cane be selected according to your requirements. If you do not
need one specific type of information (say, licenses), consider removing it
because the more options you scan for, the longer it will take for the scan
to complete.

	--license-score INTEGER is to be set if license matching accuracy is desired (Default is 0,
and increasing this means a more accurate match). Also, using --license-text includes the
matched text to the result.

	-n INTEGER option can be used to speed up the scan using multiple parallel processes.

	--timeout FLOAT option can be used to skip files taking a long time to scan.

	--ignore <pattern> can be used to skip certain group of files.

	<OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output
for specific tasks/have requirements. Here we are using json as ScanCode Workbench imports
json files only.

For the complete list of options, refer All Available Options.

Running The Scan

Now, run the scan with the options decided:

scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
 scan_start: 2019-09-24T203514.573671
 scan_end: 2019-09-24T203545.649805
 setup_scan:licenses: 4.30s
 setup: 4.30s
 scan: 26.62s
 total: 31.14s
Removing temporary files...done.

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	Reference Docs

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Other available CLIs

scancode-reindex-licenses Usage

Usage: scancode-reindex-licenses [OPTIONS]

Reindex scancode licenses and exit

Options

	--all-languages

	[EXPERIMENTAL] Rebuild the license index
including texts all languages (and not only
English) and exit.

	--only-builtin

	Rebuild the license index excluding any
additional license directory or additional
license plugins which were added previously, i.e.
with only builtin scancode license and rules.

	--additional-directory DIR

	Include this directory with additional custom
licenses and license rules in the license
detection index.

	--load-dump

	Load all license and rules from their respective
files and then dump them back to those same files.

	-h, --help

	Shows the options and explanations.

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

extractcode samples

This extracts the zlib.tar.gz package:

[image: ../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

scancode-reindex-licenses command

ScanCode maintains a license index to search for and detect licenses. When Scancode is
configured for the first time, a license index is built and used in every scan thereafter.

This scancode-reindex-licenses command rebuilds the license index. Running this command
displays the following message to the terminal:

Checking and rebuilding the license index...

This has several CLI options as follows:

--additional-directory Option:

The --additional-directory option allows the user to include additional directories
of licenses to use in license detection.

This command only needs to be run once for each set of additional directories, in all subsequent
runs of Scancode with the same directories all the licenses in the directories will be cached
and used in License detection. But reindexing removes these directories, if they aren’t
reintroduced as additional directories.

The directory structure should look something like this:

additional_license_directory/
├── licenses/
│ ├── example-installed-1.LICENSE
│ └── example-installed-1.yaml
├── rules/
│ ├── example-installed-1.RULE
│ └── example-installed-1.yaml

Here is an example of reindexing the license cache using the --additional-directory PATH option
with a single directory:

scancode-reindex-licenses --additional-directory tests/licensedcode/data/additional_licenses/additional_dir/

You can also include multiple directories like so:

scancode-reindex-licenses --additional-directory /home/user/external_licenses/external1 --additional-directory /home/user/external_licenses/external2

If you want to continue running scans with /home/user/external_licenses/external1 and
/home/user/external_licenses/external2, you can simply run scans after the command above
reindexing with those directories and they will be included.

scancode -l --license-text --json-pp output.json samples

However, if you wanted to run a scan with a new set of directories, such as
home/user/external_licenses/external1 and home/user/external_licenses/external3, you would
need to reindex the license index with those directories as parameters:

scancode --additional-directory /home/user/external_licenses/external1 --additional-directory /home/user/external_licenses/external3

Note

Adding licenses/rules from an additional directory is not permanent.
Another reindexing without the additional directory option would
just use the builtin scancode licenses and rules, and will not have
these additonal licenses/rules anymore.

Note

You can also install external licenses through a plugin for
better reproducibility and distribution of those license/rules
for use in conjunction with scancode-toolkit licenses.
See How to install a plugin containing external licenses and/or rules

--only-builtin Option:

Rebuild the license index excluding any additional license directory or additional
license plugins which were added previously, i.e. with only builtin scancode license and rules.

This is applicable when there are additional license plugins installed already and you want to
reindex the licenses without these licenses from the additional plugins.

Note

Running the --only-builtin command won’t get rid of the installed license plugins, it
would just reindex without the licenses from these plugins for once. Another reindex afterwards
without this option would bring back the licenses from the plugins again in the index.

--all-languages Option:

Rebuild the license index including texts all languages (and not only
English) and exit. This is an EXPERIMENTAL option.

--load-dump Option

Load all licenses and rules from their respective files and then dump them
to their respective files. This is done to make small formatting changes across
all licenses and rules, to be consistent across them.

Basic Options

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--license-references

	--license-text

	--license-text-diagnostics

	--license-diagnostics

	--license-url-template TEXT

	--license-score INT

	--license-clarity-score

	--consolidate

	--unknown-licenses

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	--system-package

	Scan <input> for installed system package
databases.

	--package-only

	Scan <input> for system and application
only for package metadata, without license/
copyright detection and package assembly.

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Scan for and include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any combination of these
options are used, ScanCode performs only that specific task, and not the others.
scancode -l scans only for licenses, and doesn’t scan for copyright/packages/general
information/emails/urls. The only notable exception: a --package scan also has
license information for package manifests and top-level packages, which are derived
regardless of --license option being used.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
scancode -c -i -p, you can write scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of: --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of: --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or smaller number of matches).

Sub-Option of: --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of: --license

Sub-Options:

	--license-text-diagnostics

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: default: https://scancode-licensedb.aboutcode.org/{}]

Sub-Option of: --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of: --license and --license-text

	--license-diagnostics

	In license detections, include diagnostic details to figure out the
license detection post processing steps applied.

Sub-Option of: --license

	--unknown-licenses

	[EXPERIMENTAL] Detect unknown licenses.

Sub-Option of: --license

--copyright Option

The --copyright option detects copyright statements in files.

It adds the following resource-level attributes:

	copyrights: This is a data mapping with the following attributes: copyright
containing the whole copyright value, with start_line and end_line containing
the line numbers in the file where this copyright value was detected.

	holders: This is a data mapping with the following attributes: holder
containing the whole copyright holder value, with start_line and end_line
containing the line numbers in the file where this copyright value was detected.

	authors: This is a data mapping with the following attributes: author
containing the whole copyright author value, with start_line and end_line
containing the line numbers in the file where this copyright value was detected.

Example:

#
Copyright (c) 2010 Patrick McHardy All rights reserved.
Authors: Patrick McHardy <kaber@trash.net>

The above lines when scanned for copyrights generates the following results for the discussed attributes:

{
 "copyrights": [
 {
 "copyright": "Copyright (c) 2010 Patrick McHardy",
 "start_line": 2,
 "end_line": 2
 }
],
 "holders": [
 {
 "holder": "Patrick McHardy",
 "start_line": 2,
 "end_line": 2
 }
],
 "authors": [
 {
 "author": "Patrick McHardy <kaber@trash.net>",
 "start_line": 3,
 "end_line": 3
 }
],
}

--license Option

The --license option detects various kinds of license texts, notices, tags, references
and other specialized license declarations like the SPDX license identifier in files.

It adds the following attributes to the file data:

	license_detections: This has a mapping of license detection data with the license
expression, detection log and license matches. And the license matches contain the
license expression for the match, score, more details for the license detected
and the rule detected, along with the match text optionally.

	license_clues: This is a list of license matches, same as matches in
license_detections. These are mere license clues and not perfect detections.

	detected_license_expression: This is a scancode license expression string.

	detected_license_expression_spdx: This is the SPDX version of
detected_license_expression.

	percentage_of_license_text: This has a percentage number which denotes what percentage
of the resource scanned has legalese words.

Example:

License: Apache-2.0

If we run license detection (with --license-text) on the above text we get the following
result for the resource attributes added by the license detection:

{
 "path": "apache-2.0.txt",
 "type": "file",
 "detected_license_expression": "apache-2.0",
 "detected_license_expression_spdx": "Apache-2.0",
 "license_detections": [
 {
 "license_expression": "apache-2.0",
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 4,
 "match_coverage": 100.0,
 "matcher": "1-hash",
 "license_expression": "apache-2.0",
 "rule_identifier": "apache-2.0_65.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/apache-2.0_65.RULE",
 "matched_text": "License: Apache-2.0"
 }
],
 "identifier": "apache_2_0-ec759ae0-ea5a-f138-793e-388520e080c0"
 }
],
 "license_clues": [],
 "percentage_of_license_text": 100.0,
 "scan_errors": []
}

We also have top level unique license detections with the same identifier
referencing all occurrences of this license detection and counts:

{
 "license_detections": [
 {
 "identifier": "apache_2_0-ec759ae0-ea5a-f138-793e-388520e080c0",
 "license_expression": "apache-2.0",
 "detection_count": 1
 }
]
}

--package Option

The --package option detects various package manifests, lockfiles and package-like
data and then assembles codebase level packages and dependencies from these
package data detected at files. Also tags files if they are part of the packages.

It adds the following attributes to the file data:

	package_data: This is a mapping of package data parsed and retrieved from
the file, with the fields for the package URL, license detections, copyrights,
dependencies, and the various URLs.

	for_packages: This is a list of strings pointing to the packages that the
files is a part of. The string is basically a packageURL with an UUID as a qualifier.

It adds the following attributes to the top-level in results:

	packages: This is a mapping of package data with all the atrributes
present in file level package_data with the following extra attributes:
package_uid, datafile_paths and datasource_ids.

	dependencies: This is a mapping of dependency data from all the lockfiles
or package manifests in the scan.

Example:

The following scan result was generated from scanning a package manifest:

{
 "dependencies": [
 {
 "purl": "pkg:bower/get-size",
 "extracted_requirement": "~1.2.2",
 "scope": "dependencies",
 "is_runtime": true,
 "is_optional": false,
 "is_resolved": false,
 "resolved_package": {},
 "extra_data": {},
 "dependency_uid": "pkg:bower/get-size?uuid=fixed-uid-done-for-testing-5642512d1758",
 "for_package_uid": "pkg:bower/blue-leaf?uuid=fixed-uid-done-for-testing-5642512d1758",
 "datafile_path": "bower.json",
 "datasource_id": "bower_json"
 }
],
 "packages": [
 {
 "type": "bower",
 "namespace": null,
 "name": "blue-leaf",
 "version": null,
 "qualifiers": {},
 "subpath": null,
 "primary_language": null,
 "description": "Physics-like animations for pretty particles",
 "release_date": null,
 "parties": [
 {
 "type": null,
 "role": "author",
 "name": "Betty Beta <bbeta@example.com>",
 "email": null,
 "url": null
 }
],
 "keywords": [
 "motion",
 "physics",
 "particles"
],
 "homepage_url": null,
 "download_url": null,
 "size": null,
 "sha1": null,
 "md5": null,
 "sha256": null,
 "sha512": null,
 "bug_tracking_url": null,
 "code_view_url": null,
 "vcs_url": null,
 "copyright": null,
 "declared_license_expression": "mit",
 "declared_license_expression_spdx": "MIT",
 "license_detections": [
 {
 "license_expression": "mit",
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 1,
 "match_coverage": 100.0,
 "matcher": "1-spdx-id",
 "license_expression": "mit",
 "rule_identifier": "spdx-license-identifier: mit",
 "rule_url": null,
 "rule_relevance": 100,
 "matched_text": "MIT"
 }
],
 "identifier": "apache_2_0-ec759abc-ea5a-2a38-793e-312340e080c0"
 }
],
 "other_license_expression": null,
 "other_license_expression_spdx": null,
 "other_license_detections": [],
 "extracted_license_statement": "MIT",
 "notice_text": null,
 "source_packages": [],
 "extra_data": {},
 "repository_homepage_url": null,
 "repository_download_url": null,
 "api_data_url": null,
 "package_uid": "pkg:bower/blue-leaf?uuid=fixed-uid-done-for-testing-5642512d1758",
 "datafile_paths": [
 "bower.json"
],
 "datasource_ids": [
 "bower_json"
],
 "purl": "pkg:bower/blue-leaf"
 }
],
 "files": [
 {
 "path": "bower.json",
 "type": "file",
 "package_data": [
 {
 "type": "bower",
 "namespace": null,
 "name": "blue-leaf",
 "version": null,
 "qualifiers": {},
 "subpath": null,
 "primary_language": null,
 "description": "Physics-like animations for pretty particles",
 "release_date": null,
 "parties": [
 {
 "type": null,
 "role": "author",
 "name": "Betty Beta <bbeta@example.com>",
 "email": null,
 "url": null
 }
],
 "keywords": [
 "motion",
 "physics",
 "particles"
],
 "homepage_url": null,
 "download_url": null,
 "size": null,
 "sha1": null,
 "md5": null,
 "sha256": null,
 "sha512": null,
 "bug_tracking_url": null,
 "code_view_url": null,
 "vcs_url": null,
 "copyright": null,
 "declared_license_expression": "mit",
 "declared_license_expression_spdx": "MIT",
 "license_detections": [
 {
 "license_expression": "mit",
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 1,
 "match_coverage": 100.0,
 "matcher": "1-spdx-id",
 "license_expression": "mit",
 "rule_identifier": "spdx-license-identifier: mit",
 "rule_url": null,
 "rule_relevance": 100,
 "matched_text": "MIT"
 }
],
 "identifier": "apache_2_0-ec759abc-ea5a-2a38-793e-312340e080c0"
 }
],
 "other_license_expression": null,
 "other_license_expression_spdx": null,
 "other_license_detections": [],
 "extracted_license_statement": "MIT",
 "notice_text": null,
 "source_packages": [],
 "file_references": [],
 "extra_data": {},
 "dependencies": [
 {
 "purl": "pkg:bower/get-size",
 "extracted_requirement": "~1.2.2",
 "scope": "dependencies",
 "is_runtime": true,
 "is_optional": false,
 "is_resolved": false,
 "resolved_package": {},
 "extra_data": {}
 }
],
 "repository_homepage_url": null,
 "repository_download_url": null,
 "api_data_url": null,
 "datasource_id": "bower_json",
 "purl": "pkg:bower/blue-leaf"
 }
],
 "for_packages": [
 "pkg:bower/blue-leaf?uuid=fixed-uid-done-for-testing-5642512d1758"
],
 "scan_errors": []
 }
]
}

--info Option

The --info option obtains miscellaneous information about the file being
scanned such as mime/filetype, checksums, programming language, and various
boolean flags.

It adds the following attributes to the file data:

	date: last modified data of the file.

	sha1, md5 and sha256: file checksums of various algorithms.

	mime_type and file_type: basic file type and mime type/subtype
information obtained from libmagic.

	programming_language: programming language based on extensions.

	is_binary, is_text, is_archive, is_media, is_source,
and is_script: various boolean flags with misc. information about the file.

--email Option

The --email option detects and reports email adresses present in scanned files.

It adds the emails attribute to the file data with the following attributes:
email with the actual email that was present in the file, start_line and
end_line to be able to locate where the email was detected in the file.

--url Option

The --url option detects and reports URLs present in scanned files.

It adds the urls attribute to the file data with the following attributes:
url with the actual URL that was present in the file, start_line and
end_line to be able to locate where the URL was detected in the file.

--generated Option

The --generated option classifies automatically generated code files with a flag.

An example of using --generated in a scan:

scancode -clpieu --json-pp output.json samples --generated

In the results, for each file the following attribute is added with it’s corresponding
true/false value

"is_generated": true

Classification of a file being generated or not is done based on the first few lines
having usually encountered generated keywords.

--max-email Option

Dependency

The option --max-email is a sub-option of and requires the option --email.

If in the files that are scanned, in individual files, there are a lot of emails (i.e lists) which
are unnecessary and clutter the scan results, --max-email option can be used to report emails
only up to a limit in individual files.

Some important INTEGER values of the --max-email INTEGER option:

	0 - No limit, include all emails.

	50 - Default.

An example usage:

scancode -clpieu --json-pp output.json samples --max-email 5

This only reports 5 email addresses per file and ignores the rest.

--max-url Option

Dependency

The option --max-url is a sub-option of and requires the option --url.

If in the files that are scanned, in individual files, there are a lot of links to other websites
(i.e url lists) which are unnecessary and clutter the scan results, --max-url option can be
used to report urls only up to a limit in individual files.

Some important INTEGER values of the --max-url INTEGER option:

	0 - No limit, include all urls.

	50 - Default.

An example usage:

scancode -clpieu --json-pp output.json samples --max-url 10

This only reports 10 urls per file and ignores the rest.

--license-score Option

Dependency

The option --license-score is a sub-option of and requires the option --license.

License matching strictness, i.e. How closely matched licenses are detected in a scan, can be
modified by using this --license-score option.

Some important INTEGER values of the --license-score INTEGER option:

	0 - Default and Lowest Value, All matches are reported.

	100 - Highest Value, Only licenses with a much better match are reported

Here, a bigger number means a better match, i.e. Setting a higher license score translates to a
higher threshold for matching licenses (with equal or less number of license matches).

An example usage:

scancode -clpieu --json-pp output.json samples --license-score 70

Here’s the license results on setting the integer value to 100, Vs. the default value 0. This is
visualized using ScanCode workbench in the License Info Dashboard.

License scan results of Samples Directory.

	
[image: ../_images/core_lic_score_0.png]

License Score 0 (Default).

	
[image: ../_images/core_lic_score_100.png]

License Score 100.

--license-text Option

Dependency

The option --license-text is a sub-option of and requires the option --license.

Sub-Option

The option --license-text-diagnostics is a sub-option of --license-text.

With the --license-text option, the scan results attribute “matched text” includes the matched text
for the detected license.

An example Scan:

scancode -cplieu --json-pp output.json samples --license-text

An example matched text included in the results is as follows:

"matched_text":
 " This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu"

	The file in which this license was detected: samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h

	License name: “ZLIB License”

--license-url-template Option

Dependency

The option --license-url-template is a sub-option of and requires the option
--license.

The --license-url-template option sets the template URL used for the license reference URLs.

The default template URL is : [https://scancode-licensedb.aboutcode.org/{}]
In a template URL, curly braces ({}) are replaced by the license key.

So, by default the license reference URL points to the LicenseDB page for that license.

A scan example using the --license-url-template TEXT option

scancode -clpieu --json-pp output.json samples --license-url-template https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/{}.LICENSE

In a normal scan, reference url for “ZLIB License” is as follows:

"reference_url": "https://scancode-licensedb.aboutcode.org/zlib",

After using the option in the following manner:

``--license-url-template https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/{}.LICENSE``

the reference URL changes to this zlib.LICENSE file [https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/licenses/zlib.LICENSE]:

"reference_url": "https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/licenses/zlib.LICENSE",

The reference URL changes for all detected licenses in the scan, across the scan result file.

--license-text-diagnostics Option

Dependency

The option --license-text-diagnostics is a sub-option of and requires the options
--license and --license-text.

In the matched license text, include diagnostic highlights surrounding with square brackets []
words that are not matched.

In a normal scan, whole lines of text are included in the matched license text, including parts
that are possibly unmatched.

An example Scan:

scancode -cplieu --json-pp output.json samples --license-text --license-text-diagnostics

Running a scan on the samples directory with --license-text --license-text-diagnostics options,
causes the following difference in the scan result of the file
samples/JGroups/licenses/bouncycastle.txt.

Without Diagnostics:

"matched_text":
"License Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
(http://www.bouncycastle.org) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the \"Software\"),
to deal in the Software without restriction

With Diagnostics on:

"matched_text":
"License [Copyright] ([c]) [2000] - [2006] [The] [Legion] [Of] [The] [Bouncy] [Castle]
([http]://[www].[bouncycastle].[org]) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the \"Software\"),
to deal in the Software without restriction,

--license-diagnostics Option

Dependency

The option --license-diagnostics is a sub-option of and requires the option
--license

On using the --license-diagnostics option on a license scan there is the
detection_log attribute added to license detections with diagnostics information
about the license detection post-processing steps which are used to create license
detections from license matches.

Consider the following text:

License
All code, unless stated otherwise, is dual-licensed under
[`WTFPL`](http://www.wtfpl.net/txt/copying/) and
[`MIT`](https://opensource.org/licenses/MIT).

If we run a license scan with the --license-diagnostics option enabled,
we have the following license detection results:

{
 "path": "README.md",
 "type": "file",
 "detected_license_expression": "wtfpl-2.0 AND mit",
 "detected_license_expression_spdx": "WTFPL AND MIT",
 "license_detections": [
 {
 "license_expression": "wtfpl-2.0 AND mit",
 "matches": [
 {
 "score": 100.0,
 "start_line": 43,
 "end_line": 43,
 "matched_length": 3,
 "match_coverage": 100.0,
 "matcher": "2-aho",
 "license_expression": "unknown-license-reference",
 "rule_identifier": "lead-in_unknown_30.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/lead-in_unknown_30.RULE",
 "matched_text": "dual-licensed under [`
 },
 {
 "score": 50.0,
 "start_line": 43,
 "end_line": 43,
 "matched_length": 1,
 "match_coverage": 100.0,
 "matcher": "2-aho",
 "license_expression": "wtfpl-2.0",
 "rule_identifier": "spdx_license_id_wtfpl_for_wtfpl-2.0.RULE",
 "rule_relevance": 50,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/spdx_license_id_wtfpl_for_wtfpl-2.0.RULE",
 "matched_text": "WTFPL"
 },
 {
 "score": 100.0,
 "start_line": 43,
 "end_line": 43,
 "matched_length": 3,
 "match_coverage": 100.0,
 "matcher": "2-aho",
 "license_expression": "wtfpl-2.0",
 "rule_identifier": "wtfpl-2.0_27.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/wtfpl-2.0_27.RULE",
 "matched_text": "www.wtfpl.net/"
 },
 {
 "score": 100.0,
 "start_line": 43,
 "end_line": 43,
 "matched_length": 6,
 "match_coverage": 100.0,
 "matcher": "2-aho",
 "license_expression": "mit",
 "rule_identifier": "mit_64.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/mit_64.RULE",
 "matched_text": "MIT`](https://opensource.org/licenses/MIT)."
 }
],
 "detection_log": [
 "unknown-intro-followed-by-match"
],
 "identifier": "wtfpl_2_0_and_mit-e5642b07-705c-9730-80ab-f5ed0565be28"
 }
],
 "license_clues": [],
 "percentage_of_license_text": 8.18,
 "scan_errors": []
}

Here from the "detection_log": ["unknown-intro-followed-by-match"] added diagnostics
information we learn that there was an unknown intro license match, followed by
proper detections, so we conclude the unknown intro to be an introduction to the
following license and hence conclude the license from the license matches after the
unknown detection.

Core Options

All “Core” Scan Options

	-n, --processes INTEGER

	Scan <input> using n parallel processes.
[Default: 1]

	-v, --verbose

	Print verbose file-by-file progress messages.

	-q, --quiet

	Do not print summary or progress messages.

	--timeout FLOAT

	Stop scanning a file if scanning takes longer
than a timeout in seconds. [Default: 120]

	--from-json

	Load codebase from one or more existing JSON scans.

	--max-in-memory INTEGER

	Maximum number of files and directories scan
details kept in memory during a scan.
Additional files and directories scan details
above this number are cached on-disk rather
than in memory. Use 0 to use unlimited memory
and disable on-disk caching. Use -1 to use
only on-disk caching. [Default: 10000]

	--max-depth INTEGER

	Descend at most INTEGER levels of directories
including and below the starting point. INTEGER
must be positive or zero for no limit.
[Default: 0]

Comparing Progress Message Options

Default Progress Message:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 process(es)...
Building license detection index...Done.
Scanning files...
[####################] 43
Scanning done.
Scan statistics: 43 files scanned in 33s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1 process(es).
Scanning speed: 1.4 files per sec.
Scanning time: 30s.
Indexing time: 2s.
Saving results.

Progress Message with ``–verbose``:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 process(es)...
Building license detection index...Done.
Scanning files...
Scanned: screenshot.png
Scanned: README
...
Scanned: zlib/dotzlib/ChecksumImpl.cs
Scanned: zlib/dotzlib/readme.txt
Scanned: zlib/gcc_gvmat64/gvmat64.S
Scanned: zlib/ada/zlib.ads
Scanned: zlib/infback9/infback9.c
Scanned: zlib/infback9/infback9.h
Scanned: arch/zlib.tar.gz
Scanning done.
Scan statistics: 43 files scanned in 29s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1 process(es).
Scanning speed: 1.58 files per sec.
Scanning time: 27s.
Indexing time: 2s.
Saving results.

So, with --verbose enables, progress messages for individual files are shown.

With the ``–quiet`` option enabled, nothing is printed on the Command Line.

--timeout Option

This option sets scan timeout for each file (and not the entire scan). If some file scan
exceeds the specified timeout, that file isn’t scanned anymore and the next file scanning
starts. This helps avoiding very large/long files, and saves time.

Also the number (timeout in seconds) to be followed by this option can be a
floating point number, i.e. 1.5467.

--from-json Option

If you want to input scan results from a .json file, and run a scan again on those same files,
with some other options/output format, you can do so using the --from-json option.

An example scan command using --from-json:

scancode --from-json sample.json --json-pp sample_2.json --classify

This inputs the scan results from sample.json, runs the post-scan plugin --classify and
outputs the results for this scan to sample_2.json.

--max-in-memory Option

During a scan, as individual files are scanned, the scan details for those files are kept on
memory till the scan is completed. Then after the scan is completed, they are written in the
specified output format.

Now, if the scan involves a very large number of files, they might not fit in the memory during
the scan. For this reason, disk-caching can be used for some/all of the files.

Some important INTEGER values of the --max-in-memory INTEGER option:

	0 - Unlimited Memory, store all the file/directory scan results on memory

	-1 - Use only Disk-Caching, store all the file/directory scan results on disk

	10000 - Default, store 10,000 file/directory scan results on memory and the rest on disk

An example usage:

scancode -clieu --json-pp sample.json samples --max-in-memory -1

--max_depth Option

Normally, the scan takes place upto the maximum level of nesting of directories possible. But
using the --max-depth option, you can specify the maximum level of directories to scan,
including and below the root location. This can reduce the time taken for the scan when deeper
directories are not relevant.

Note that the --max-depth option will be ignored if you are scanning from a JSON file using
the --from-json option. In that case, the original depth is used.

An example usage:

scancode -clieu --json-pp results.json samples --max-depth 3

This would scan the file samples/levelone/leveltwo/file but ignore
samples/levelone/leveltwo/levelthree/file

Scancode Output Formats

Scan results generated by Scancode are available in different formats, to be specified by the
following options.

All Scan Output Options

	--json FILE

	Write scan output as compact JSON to FILE.

	--json-pp FILE

	Write scan output as pretty-printed JSON to
FILE. This is one of the recommended output
formats and contains all the data scancode
can show along with the YAML output format.

	--json-lines FILE

	Write scan output as JSON Lines to FILE.

	--yaml FILE

	Write scan output as YAML to FILE.
This is one of the recommended output
formats and contains all the data scancode
can show along with the JSON output format.

	--csv FILE

	DEPRECATED: Write scan output as CSV to FILE.
This option is deprecated and will be replaced by
new CSV and tabular output formats in the next
ScanCode release. Visit this issue for details,
and to provide input and feedback:
https://github.com/nexB/scancode-toolkit/issues/3043

	--html FILE

	Write scan output as HTML to FILE.

	--custom-output

	Write scan output to FILE formatted with the
custom Jinja template file.

Mandatory Sub-option:

	--custom-template FILE

	--custom-template FILE

	Use this Jinja template FILE as a custom
template.

Sub-Option of: --custom-output

	--debian FILE

	Write scan output in machine-readable Debian copyright
format to FILE.

	--spdx-rdf FILE

	Write scan output as SPDX RDF to FILE.

	--spdx-tv FILE

	Write scan output as SPDX Tag/Value to FILE.

	--html-app FILE

	[DEPRECATED] Use scancode-workbench
instead. Write scan output as a mini HTML
application to FILE.

	--cyclonedx FILE

	Write scan output as a CycloneDx 1.3 BOM
in pretty-printed JSON format to FILE

	--cyclonedx-xml FILE

	Write scan output as a CycloneDx 1.3 BOM
in pretty-printed XML format to FILE

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

Note

You can Output Scan Results in two different file formats simultaniously in one Scan. An
example - scancode -clpieu --json-pp output.json --html output.html samples.

Note

All the examples and snippets that follows has been generated by scanning the samples
folder distributed with scancode-toolkit.

Print to stdout (Terminal)

If you want to format the output in JSON and print it at stdout, you can replace the JSON filename
with a “-”, like --json-pp - instead of --json-pp output.json.

The following command will output the scan results in JSON format to stdout (In the Terminal):

./scancode -clpieu --json-pp - samples/

--json FILE

Among the ScanCode Output Formats, json is the most important one, and is recommended over
others. Scancode Workbench and other applications that use Scancode Result data as input accept
only the json format.

The following code performs a scan on the samples directory, and publishes the results in
json format:

scancode -clpieu --json output.json samples

Note

The default json format prints the whole report without line breaks/spaces/indentations,
which can be ugly to look at.

[image: ../_images/json_ugly.png]

The entire JSON file is structured in the following manner:

At first some general information on the scan, what options were used, the number of files etc.
And then all the files follow.

{
 "headers": [
 {
 "tool_name": "scancode-toolkit",
 "tool_version": "3.1.1",
 "options": {
 "input": [
 "samples/"
],
 "--copyright": true,
 "--email": true,
 "--info": true,
 "--json-pp": "output.json",
 "--license": true,
 "--package": true,
 "--url": true
 },
 "notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.",
 "start_timestamp": "2019-10-19T191117.292858",
 "end_timestamp": "2019-10-19T191219.743133",
 "message": null,
 "errors": [],
 "extra_data": {
 "files_count": 36
 }
 }
],
 "files": [
 {
 "path": "samples",
 "type": "directory",
 ...
 "scan_errors": []
 },
 {
 "path": "samples/README",
 "type": "file",
 "name": "README",
 "base_name": "README",
 "extension": "",
 "size": 236,
 "date": "2019-02-12",
 "sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
 "md5": "effc6856ef85a9250fb1a470792b3f38",
 "mime_type": "text/plain",
 "file_type": "ASCII text",
 "programming_language": null,
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "license_detections": [],
 "detected_license_expression": None,
 "detected_license_expression_spdx": None,
 "copyrights": [],
 "holders": [],
 "authors": [],
 "package_data": [],
 "for_packages": [],
 "emails": [],
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
 },
 {...},
 ...
]
}

--json-pp FILE

json-pp stands for JSON Pretty-Print format. In the previous format, i.e. Simple json,
the whole output is printed in one line, which isn’t well suited for getting information if
you’re looking at the file itself (or printing at stdout). So this option formats the output
results in json but in a properly spaced and indented manner, and is easy to look at.

The following code performs a scan on the samples directory, and publishes the results in
json-pp format:

scancode -clpieu --json-pp output.json samples

A sample JSON output for an individual file will look like:

{
 "path": "samples/zlib/iostream2/zstream.h",
 "type": "file",
 "name": "zstream.h",
 "base_name": "zstream",
 "extension": ".h",
 "size": 9283,
 "date": "2019-02-12",
 "sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
 "md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
 "mime_type": "text/x-c++",
 "file_type": "C++ source, ASCII text",
 "programming_language": "C++",
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": true,
 "is_script": false,
 "license_detections": [
 "license-expression": "mit-old-style",
 "matches": [
 {
 "license_expression": "mit-old-style",
 "score": 100.0,
 "rule_identifier": "mit-old-style_cmr-no_1.RULE",
 "matcher": "2-aho",
 "rule_length": 71,
 "matched_length": 71,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
]
 "identifier": "mit-old-style-ec759ae0-1234-f138-793e-356789e080c0"
],
 "detected_license_expressions": "mit-old-style",
 "detected_license_expressions_spdx": "LicenseRef-scancode-mit-old-style",
 "copyrights": [
 {
 "value": "Copyright (c) 1997 Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "holders": [
 {
 "value": "Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "authors": [],
 "package_data": [],
 "emails": [],
 "urls": [
 {
 "url": "http://www.cmr.no/",
 "start_line": 7,
 "end_line": 7
 }
],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

This is the recommended Output option for Scancode Toolkit.

--json-lines FILE

ScanCode also has a --json-lines format option, where each report of a file scanned is
formatted in one line.

The following code performs a scan on the samples directory, and publishes the results in
json-lines format:

scancode -clpieu --json-lines output.json samples

Here is a sample line from a report generated by the jsonlines format:

{"files":[{"path":"samples/zlib/ada",licenses":[],"copyrights":[],"packages":[]}]}

The header information is also formatted in one line (i.e. The First Line of the file).

The whole Output file looks like:

{"headers":[{"tool_name":"scancode-toolkit","tool_version":"3.1.1","options":{"input":["samples/"],"--copyright":true,"--email":true,"--info":true,"--json-lines":"output.json","--license":true,"--package":true,"--url":true},"notice":"Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.","start_timestamp":"2019-10-19T210920.143831","end_timestamp":"2019-10-19T211052.048182","message":null,"errors":[],"extra_data":{"files_count":36}}]}
{"files":[{"path":"samples" ... "scan_errors":[]}]}
{"files":[{"path":"samples/README", ... "scan_errors":[]}]}
{"files":[{"path":"samples/screenshot.png", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/EULA", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/LICENSE", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-1.1.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-2.0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/bouncycastle.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/cpl-1.0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/lgpl.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/FixedMembershipToken.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/GuardedBy.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/ImmutableReference.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RATE_LIMITER.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RouterStub.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RouterStubManager.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/S3_PING.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/adler32.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zlib.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada/zlib.ads", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/AssemblyInfo.cs", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/ChecksumImpl.cs", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/LICENSE_1_0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/readme.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/gcc_gvmat64" ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/gcc_gvmat64/gvmat64.S" ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream_test.cpp", ... "scan_errors":[]}]}

Note

This jsonlines format also omits other file information like type, name, date,
extension, sha1 and md5 hashes, programming language etc.

Comparing Different json Output Formats

Default --json Output:

[image: ../_images/output_json.png]

--json-pp Output:

[image: ../_images/output_jsonpp.png]

--json-lines Output:

[image: ../_images/output_jsonlines.png]

--spdx-rdf FILE

SPDX [https://spdx.org/] stands for “Software Package and Data Exchange” and is an open standard
for communicating software bill of material information (including components, licenses,
copyrights, and security references).

The following code performs a scan on the samples directory, and publishes the results in
spdx-rdf format:

scancode -clpieu --spdx-rdf output.spdx samples

Learn more about SPDX specifications here [https://spdx.org/specifications] and in this GitHub
repository [https://github.com/spdx/spdx-spec].

Here the file is structured as a dictionary of named properties and classes using W3C’s
RDF Technology [https://www.w3.org/RDF/].

[image: ../_images/output_spdx_rdf1.png]

--spdx-tv FILE

This format is another SPDX variant, with the output file being structured in the following
manner:

The following code performs a scan on the samples directory, and publishes the results in
spdx-tv format:

scancode -clpieu --spdx-tv output.spdx samples

A SPDX-TV file starts with:

Document Information

SPDXVersion: SPDX-2.1
DataLicense: CC0-1.0
DocumentComment: <text>Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. No content created from
ScanCode should be considered or used as legal advice. Consult an Attorney
for any legal advice.
ScanCode is a free software code scanning tool from nexB Inc. and others.
Visit https://github.com/nexB/scancode-toolkit/ for support and download.</text>

Creation Info

Creator: Tool: ScanCode 2.2.1
Created: 2019-09-22T21:55:04Z

After a section titled #Packages, a list follows.

[image: ../_images/output_spdx_tv_package.png]

Each File information is listed under a #File title, for each of the files.

	
	FileName

	FileChecksum

	
	LicenseConcluded

	LicenseInfoInFile

	
	FileCopyrightText

An example goes as follows:

[image: ../_images/output_spdx_tv_file.png]

After the files section, there’s a section for licenses under a #Licences title, with the
following information for each license:

	
	LicenseID

	
	LicenseComment

	
	ExtractedText

Here’s an example:

[image: ../_images/output_spdx_tv_licenses.png]

--html FILE

ScanCode supports formatting the Output result is a simple html format, to open with your
favorite browser. This helps quick visualization of the detected license/copyright and other
main information in the form of tables.

The following code performs a scan on the samples directory, and publishes the results in
HTML format:

scancode -clpieu --html output.html samples

The HTML page generated has these following Tables:

	
	Copyright and Licenses Information

	File Information

	
	Package Information

	Licenses (Links to Dejacode/License Homepage)

[image: ../_images/output_html1.png]

[image: ../_images/output_html2.png]

[image: ../_images/output_html3.png]

--html-app FILE

ScanCode also supports formatting the output in a HTML visualization tool, which is more
helpful than the standard HTML format.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

The following code performs a scan on the samples directory, and publishes the results in
html-app format:

scancode -clpieu --html-app output.html samples

The Files scanned are shown in the left sidebar, and the section on the right contains separate
tabs for the following:

	
	License Summary

	Copyright Summary

	Clues

	
	File Details

	Packages

Note

The HTML app also contains a Search option to easily find what you are looking for.
But the HTML app output is deprecated and we recommend using scancode-workbench instead:
https://github.com/nexB/scancode-workbench.

[image: ../_images/output_html_app1.png]

[image: ../_images/output_html_app2.png]

[image: ../_images/output_html_app3.png]

--csv FILE

ScanCode can publish results in the useful .csv format.

Note

This option is deprecated and will be replaced by new CSV and tabular
output formats in the next ScanCode release. Visit
https://github.com/nexB/scancode-toolkit/issues/3043
for details and to provide inputs and feedback.

The following code performs a scan on the samples directory, and publishes the results in
csv format:

scancode -lpceiu --csv sample.csv samples

The first line of the csv file contains the headings, and they are:

	
	Resource,

	type,

	name,

	base_name,

	extension,

	date,

	size,

	sha1,

	md5,

	files_count,

	mime_type,

	file_type,

	programming_language,

	is_binary,

	is_text,

	is_archive,

	is_media,

	is_source,

	
	is_script,

	scan_errors,

	license__key,

	license__score,

	license__short_name,

	license__category,

	license__owner,

	license__homepage_url,

	license__text_url,

	license__reference_url,

	license__spdx_license_key,

	license__spdx_url,

	matched_rule__identifier,

	matched_rule__license_choice,

	matched_rule__licenses,

	copyright,

	copyright_holder,

	author,

	
	email,

	start_line,

	end_line,

	url,

	package__type,

	package__name,

	package__version,

	package__primary_language,

	package__summary,

	package__description,

	package__size,

	package__release_date,

	package__homepage_url,

	package__notes,

	package__bug_tracking_url,

	package__vcs_repository,

	package__copyright_top_level

Each subsequent line represents one element, i.e. can be any of the following:

	
	license

	
	copyright

	
	package

	
	email

	
	url

So if there’s multiple elements in a file, they are each given an entry with the details mentioned
earlier.

[image: ../_images/output_csv.png]

--cyclonedx FILE

Scancode also supports the CycloneDx [https://cyclonedx.org/specification/overview/] output format

Please note that this output format is only useful when scanning with the --package option

This output format is particularly useful if you want to process ScanCode results
in downstream tools that can’t process ScanCode’s native JSON output,
but do support CycloneDx BOMs.

To run an example scan on the test resources try:
./scancode --package --cyclonedx=bom.json tests/formattedcode/data/cyclonedx/simple

If you prefer XML output over JSON, please have a look at the --cyclonedx-xml option instead

--cyclonedx-xml FILE

This option allows outputting CycloneDx BOMs in XML format instead of JSON

To run an example scan on the test resources try:
./scancode --package --cyclonedx-xml=bom.xml tests/formattedcode/data/cyclonedx/simple

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to
create their own output template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path
to the custom template to the --custom-template argument, or drop it in a folder to
src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the
particular data I wish to see. In this case, I am only interested in the license and copyright
data for this particular scan.

template.txt:
[
 {% if files.license_copyright %}
 {% for location, data in files.license_copyright.items() %}
 {% for row in data %}
 location:"{{ location }}",
 {% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
 {% endfor %}
 {% endfor %}
 {% endif %}
]

.. note::

 File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$ scancode -clpeui --custom-output output.txt --custom-template template.txt samples
Scanning files...
 [####################################] 46
Scanning done.

Now the results are saved in output.txt and we can easily view them with head output.txt:

[
 location:"samples/JGroups/LICENSE",
 copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

 location:"samples/JGroups/LICENSE",
 copyright:"copyrighted by the Free Software Foundation",
]

For a more elaborate template, refer this default template [https://github.com/nexB/scancode-toolkit/blob/develop/src/formattedcode/templates/html/template.html]
given with Scancode, to generate HTML output with the --html output format option.

Documentation on Jinja templates [https://jinja.palletsprojects.com/en/2.10.x/].

Controlling Scancode Output and Filters

All “Output Control” Scan Options

	--strip-root

	Strip the root directory segment of all paths.

	--full-root

	Report full, absolute paths.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

	--ignore-author <pattern>

	Ignore a file (and all its findings)
if an author contains a match to the
<pattern> regular expression.

	--ignore-copyright-holder <pattern>

	Ignore a file (and all its findings)
if a copyright holder contains a match
to the <pattern> regular expression.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

	--only-findings

	Only return files or directories with
findings for the requested scans.
Files and directories without findings
are omitted (file information is not
treated as findings).

--strip-root Vs. --full-root

For a default scan of the “samples” folder, this a comparison between the default,
strip-root and full-root options.

An example Scan

scancode -cplieu --json-pp output.json samples --full-root

These two changes only the “path” attribute of the file information. For this comparison we
compare the “path” attributes of the file LICENSE inside JGroups directory.

The default path:

"path": "samples/JGroups/LICENSE",

For the --full-root option, the path relative to the Root of your local filesystem.

"path": "/home/aboutcode/scancode-toolkit/samples/JGroups/LICENSE"

For the --strip-root option, the root directory (here
/home/aboutcode/scancode-toolkit/samples/) is removed from path :

"path": "JGroups/LICENSE"

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

--ignore-author <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and
subsequently included in the scan report. But if you want to run the scan on only some selective
files, with some specific common author then --ignore-author option can be used to do
the same.

This scan ignores all files with authors matching the string “Apache Software Foundation”:

scancode -cplieu --json-pp output.json samples --ignore-author "Apache Software Foundation"

More information on Glob Pattern Matching.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

--ignore-copyright-holder <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and
subsequently included in the scan report. But if you want to run the scan on only some selective
files, with some specific common copyright holder then --ignore-copyright-holder option
can be used to do the same.

This scan ignores all files with Copyright Holders matching the string “Free Software Foundation”:

scancode -cplieu --json-pp output.json samples --ignore-copyright-holder "Free Software Foundation"

More information on Glob Pattern Matching.

--only-findings Plugin

This option removes from the scan results, the files where nothing significant has been
detected, like files which doesn’t contain any licenses, copyrights, emails or urls (if
requested in the scan options), and isn’t a package.

An example Scan:

scancode -cplieu --json-pp output.json samples --only-findings

Note

This also changes in the result displayed, the number of files scanned.

For example, scanning the sample files (distributed by default with scancode-toolkit) without
this option, displays in it’s report information of 43 files. But after enabling this option, the
result shows information for only 31 files.

Pre-Scan Options

All “Pre-Scan” Options

	--ignore <pattern>

	Ignore files matching <pattern>.

	--include <pattern>

	Include files matching <pattern>.

	--classify

	Classify files with flags telling if the
file is a legal, or readme or test file,
etc.

Sub-Options:

	--license-clarity-score

	--tallies-key-files

	--facet <facet_pattern>

	Here <facet_pattern> represents
<facet>=<pattern>. Add the <facet>
to files with a path matching <pattern>.

Sub-Options:

	--tallies-by-facet

--ignore Option

In a scan, all files inside the directory specified as an input argument is scanned. But if
there are some files which you don’t want to scan, the --ignore option can be used to do
the same.

A sample usage:

scancode --ignore "*.java" samples samples.json

Here, Scancode ignores files ending with .java, and continues with other files as usual.

More information on Glob Pattern Matching.

--include Option

In a normal scan, all files inside the directory specified as an input argument is scanned. But
if you want to run the scan on only some selective files, then --include option can be used
to do the same.

A sample usage:

scancode --include "*.java" samples samples.json

Here, Scancode selectively scans files that has names ending with .java, and ignores all other files. This
is basically complementary in behavior to the --ignore option.

More information on Glob Pattern Matching.

--classify

Sub-Option

The options --license-clarity-score and --tallies-key-files are sub-options of
--classify. --license-clarity-score and --tallies-key-files are Post-Scan
Options.

The --classify option can be used like:

scancode -clpieu --json-pp sample_facet.json samples --classify

This option makes ScanCode further classify scanned files/directories, to determine whether they
fall in these following categories

	legal

	readme

	top-level

	manifest

A manifest file in computing is a file containing metadata for a group of accompanying
files that are part of a set or coherent unit.

	key-file

A KEY file is a generic file extension used by various programs when registering legal copies
of the software. It may be saved in a plain text format, but generally contains some form of
encrypted key string that authenticates the purchase and registers the software.

As in, to the JSON object of each file scanned, these extra attributes are added:

{
 "is_legal": false,
 "is_manifest": false,
 "is_readme": true,
 "is_top_level": true,
 "is_key_file": true
}

--facet Option

Sub-Option

The option --summary-by-facet is a sub-option of --facet. --summary-by-facet is
a Post-Scan Option.

Valid <facet> values are:

	core,

	dev,

	tests,

	docs,

	data,

	examples.

You can use the --facet option in the following manner:

scancode -clpieu --json-pp sample_facet.json samples --facet dev="*.java" --facet dev="*.c"

This adds to the header object, the following attribute:

"--facet": [
 "dev=*.java",
 "dev=*.c"
],

Here in this example, .java and .c files are marked as it belongs to facet dev.

As a result, .java file has the following attribute added:

"facets": [
 "dev"
],

Note

All other files which are not dev are marked to be included in the facet core.

For each facet, the --facet option precedes the <facet>=<pattern> argument. For specifying
multiple facets, this whole part is repeated, including the --facet option.

For users who want to know What is a Facet?.

Glob Pattern Matching

All the Pre-Scan options use pattern matching, so the basics of Glob Pattern Matching is
discussed briefly below.

Glob pattern matching is useful for matching a group of files, by using patterns in their
names. Then using these patterns, files are grouped and treated differently as required.

Here are some rules from the Linux Manual [http://man7.org/linux/man-pages/man7/glob.7.html]
on glob patterns. Refer the same for more detailed information.

A string is a wildcard pattern if it contains one of the characters ‘?’, ‘*’ or ‘[’. Globbing
is the operation that expands a wildcard pattern into the list of pathnames matching the
pattern. Matching is defined by:

	A ‘?’ (not between brackets) matches any single character.

	A ‘*’ (not between brackets) matches any string, including the empty string.

	An expression “[…]” where the first character after the leading ‘[’ is not an ‘!’ matches a
single character, namely any of the characters enclosed by the brackets.

	There is one special convention: two characters separated by ‘-’ denote a range.

	An expression “[!…]” matches a single character, namely any character that is not matched
by the expression obtained by removing the first ‘!’ from it.

	A ‘/’ in a pathname cannot be matched by a ‘?’ or ‘*’ wildcard, or by a range like “[.-0]”.

Note that wildcard patterns are not regular expressions, although they are a bit similar.

For more information on Glob pattern matching refer these resources:

	Linux Manual [http://man7.org/linux/man-pages/man7/glob.7.html]

	Wildcard Match Documentation [https://facelessuser.github.io/wcmatch/glob/].

You can also import these Python Libraries to practice UNIX style pattern matching:

	fnmatch [https://docs.python.org/2/library/fnmatch.html] for File Name matching

	glob [https://docs.python.org/2/library/glob.html#module-glob] for File Path matching

What is a Facet?

A facet is essentially a file purpose classification label.
It is defined as follows (by ClearlyDefined):

A facet of a component is a subset of the files related to the component. It’s really just a
grouping that helps us understand the shape of the project. Each facet is described by a set of
glob expressions, essentially wildcard patterns that are matched against file names.

Each facet definition can have zero or more glob expressions. A file can be captured by more
than one facet. Any file found but not captured by a defined facet is automatically assigned to
the core facet.

	core - The files that go into making the release of the component. Note that the core
facet is not explicitly defined. Rather, it is made up of whatever is not in any other facet.
So, by default, all files are in the core facet unless otherwise specified.

	data - The files included in any data distribution of the component.

	dev - Files primarily used at development time (e.g., build utilities) and not
distributed with the component

	docs - Documentation files. Docs may be included with the executable component or
separately or not at all.

	examples – Like docs, examples may be included in the main component release or
separately.

	tests – Test files may include code, data and other artifacts.

Important Links:

	Facets [https://github.com/clearlydefined/clearlydefined/blob/master/docs/clearly.md]

	ClearlyDefined [https://clearlydefined.io/about]

Post-Scan Options

Post-Scan options activate their respective post-scan plugins which execute the task.

All “Post-Scan” Options

	--mark-source

	Set the “is_source” flag to true for directories that
contain over 90% of source files as direct children
and descendants. Count the number of source files in a
directory as a new “source_file_counts” attribute

Sub-Option of: --url

	--consolidate

	Group resources by Packages or license and
copyright holder and return those groupings
as a list of consolidated packages and a list
of consolidated components.
The –consolidate option will be deprecated in
a future version of scancode-toolkit as top level
packages now provide improved consolidated data.

Sub-Option of: --copyright, --license and
--packages.

	--filter-clues

	Filter redundant duplicated clues already
contained in detected licenses, copyright
texts and notices.

	--license-clarity-score

	Compute a summary license clarity score at
the codebase level.

Sub-Option of: --classify.

	--license-policy FILE

	Load a License Policy file and apply it to
the scan at the Resource level.

	--summary

	Summarize scans by providing declared origin
information and other detected info at the
codebase attribute level.

	--tallies

	Summarize license, copyright and other scans
at the codebase level with occurrence counts.

Sub-Options:

	--tallies-by-facet

	--tallies-key-files

	--tallies-with-details

	--tallies-by-facet

	Summarize license, copyright and other scans
and group the results by facet.

Sub-Option of: --tallies and --facet.

	--tallies-key-files

	Summarize license, copyright and other scans
for key, top-level files, with occurrence counts.
Key files are top-level codebase files such as
COPYING, README and package manifests as reported
by the --classify option: “is_legal”,
“is_readme”, “is_manifest” and “is_top_level”
flags.

Sub-Option of: --classify and --summary.

	--tallies-with-details

	Summarize license, copyright and other scans
at the codebase level with occurrence counts,
while also keeping intermediate details at
the file and directory level.

To see all plugins available via command line help, use --plugins.

Note

Plugins that are shown by using --plugins inlcude the following:

	Post-Scan Plugins (and, the following)

	Pre-Scan Plugins

	Output Options

	Output Control

	Basic Scan Options

--mark-source Option

Dependency

The option --mark-source is a sub-option of and requires the option --info.

The mark-source option marks the is_source attribute of a directory to be True, if more
than 90% of the files under that directory is source files, and False otherwise.

When the following command is executed to scan the samples directory with this option enabled:

scancode -clpieu --json-pp output.json samples --mark-source

Then, the following directories are marked as “Source”, i.e. their is_source attribute is set
to True, as they contain mostly source code.

	samples/JGroups/src

	samples/zlib/iostream2

	samples/zlib/gcc_gvmat64

	samples/zlib/ada

	samples/zlib/infback9

--consolidate Option

Dependency

The option --consolidate is a sub-option of and requires the options --license
, --copyright and --package.

Note

The --consolidate option will be deprecated in a future version of
ScanCode Toolkit as top level packages, dependencies and licenses
now provide improved consolidated data.

The JSON file containing scan results after using the --consolidate Plugin is structured as
follows:

An example Scan:

scancode -clpieu --json-pp output.json samples --consolidate

The JSON output file is structured as follows:

{
 "headers": [...],
 "consolidated_components": [
 {
 "type": "license-holders",
 "identifier": "dmitriy_anisimkov_1",
 "consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "consolidated_holders": [
 "Dmitriy Anisimkov"
],
 "consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
 "core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "core_holders": [
 "Dmitriy Anisimkov"
],
 "other_license_expression": null,
 "other_holders": [],
 "files_count": 1
 },
 {...
 }
],
 "consolidated_packages": [...],
 "files": [...]
}

Each consolidated component has the following information:

"consolidated_components": [
{
 "type": "license-holders",
 "identifier": "dmitriy_anisimkov_1",
 "consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "consolidated_holders": [
 "Dmitriy Anisimkov"
],
 "consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
 "core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "core_holders": [
 "Dmitriy Anisimkov"
],
 "other_license_expression": null,
 "other_holders": [],
 "files_count": 1
},

In addition to this, in every file/directory where the consolidated part (i.e. License information)
was present, a “consolidated_to” attribute is added pointing to the “identifier” of
“consolidated_components”:

"consolidated_to": [
 "dmitriy_anisimkov_1"
],

Note that multiple files may have the same “consolidated_to” attribute.

--filter-clues Option

The --filter-clues Plugin filters redundant duplicated clues already contained in detected
licenses, copyright texts and notices, authors.

Consider the output of running the following scan (compared to running the scan without the
--filter-clues option):

./scancode -clpieu --json-pp sample_filter_clues.json samples --filter-clues

When we run without the --filter-clues option, we have the following detections at
"path": "samples/JGroups/src/FixedMembershipToken.java":

{
 "authors": [
 {
 "author": "Chris Mills (millsy@jboss.com)",
 "start_line": 51,
 "end_line": 51
 }
],
 "emails": [
 {
 "email": "millsy@jboss.com",
 "start_line": 51,
 "end_line": 51
 }
]
}

And when we run a scan with the --filter-clues option:

{
 "authors": [
 {
 "author": "Chris Mills (millsy@jboss.com)",
 "start_line": 51,
 "end_line": 51
 }
],
 "emails": []
}

Notice that when we run the scan with the --filter-clues option, we do not
have the millsy@jboss.com in email detections as we already have it in
author detections.

--license-clarity-score Option

Dependency

The option --license-clarity-score is a sub-option of and requires the option
--classify.

Keep this doc section in sync with docstrings at: src/summarycode/score.py::compute_license_score

The --license-clarity-score plugin when used in a scan, computes a
summary license clarity score at the codebase level. The license clarity
score is a value from 0-100 calculated by combining the weighted values
determined for each of the scoring elements:

	Declared license:
	
	When true, indicates that the software package licensing is documented at
top-level or well-known locations in the software project, typically in a
package manifest, NOTICE, LICENSE, COPYING or README file.

	Scoring Weight = 40

	Identification precision:
	
	Indicates how well the license statement(s) of the software identify known
licenses that can be designated by precise keys (identifiers) as provided in
a publicly available license list, such as the ScanCode LicenseDB, the SPDX
license list, the OSI license list, or a URL pointing to a specific license
text in a project or organization website.

	Scoring Weight = 40

	License texts:
	
	License texts are provided to support the declared license expression in
files such as a package manifest, NOTICE, LICENSE, COPYING or README.

	Scoring Weight = 10

	Declared copyright:
	
	When true, indicates that the software package copyright is documented at
top-level or well-known locations in the software project, typically in a
package manifest, NOTICE, LICENSE, COPYING or README file.

	Scoring Weight = 10

	Ambiguous compound licensing
	
	When true, indicates that the software has a license declaration that
makes it difficult to construct a reliable license expression, such as in
the case of multiple licenses where the conjunctive versus disjunctive
relationship is not well defined.

	Scoring Weight = -10

	Conflicting license categories
	
	When true, indicates the declared license expression of the software is in
the permissive category, but that other potentially conflicting categories,
such as copyleft and proprietary, have been detected in lower level code.

	Scoring Weight = -20

An example Scan:

scancode -clpieu --json-pp output.json samples --classify --license-clarity-score

The “license_clarity_score” will have the following attributes:

	
	“score”

	“declared_license”

	“identification_precision

	
	“has_license_text”

	“declared_copyrights”

	
	“conflicting_license_categories”

	“ambiguous_compound_licensing”

When the “license_clarity_score” is included, the entire JSON file is structured as follows:

{
 "headers": [...],
 "summary": {
 "declared_license_expression": "mit",
 "license_clarity_score": {
 "score": 100,
 "declared_license": true,
 "identification_precision": true,
 "has_license_text": true,
 "declared_copyrights": true,
 "conflicting_license_categories": false,
 "ambiguous_compound_licensing": false
 }
 },
 "files": [...]
}

Note

When the --license-clarity-score option is used, the output is
added as the following attributes:

	declared_license_expression

	license_clarity_score (with the score and other flags as sub-attributes)

in the top-level summary attribute, but the --summary CLI option
is not required for this. Using the --summary CLI option also populates
the same top-level summary attribute with the license clarity score.

--license-policy FILE Option

Note

The --license-policy option does not have any required CLI
options, but you would not have any usable information if you are
using it without the --license option since this only gets
license keys from the file license detections. We do not have
licenses as a required option because this plugin would be
upgraded to also include the license policy attribute for
packages too.

The Policy file is a YAML (.yml) document with the following structure:

license_policies:
- license_key: mit
 label: Approved License
 color_code: '#00800'
 icon: icon-ok-circle
- license_key: agpl-3.0
 label: Approved License
 color_code: '#008000'
 icon: icon-ok-circle

Note

In the policy file only the “license_key” is a required field.

Applying License Policies during a ScanCode scan, using the --license-policy Plugin:

scancode -clipeu --json-pp output.json samples --license-policy policy-file.yml

This adds to every file/directory an object “license_policy”, having as further attributes under it
the fields as specified in the .YAML file. Here according to our example .YAML file, the attributes
will be:

	
	“license_key”

	
	“label”

	
	“color_code”

	
	“icon”

Here the samples directory is scanned, and the Scan Results for a sample file is as follows:

{
 "path": "samples/JGroups/licenses/apache-2.0.txt",
 "license_detections": [
 "license_expression": "apache-2.0",
 "matches": {...}
 "identifier": "apache_2_0-9804422e-94ac-ad40-b53a-ee6f8ddb7a3b"
],
 "detected_license_expression": "apache-2.0",
 "detected_license_expression_spdx": "Apache-2.0",
 "license_policy": {
 "license_key": "apache-2.0",
 "label": "Approved License",
 "color_code": "#008000",
 "icon": "icon-ok-circle"
 },
 ...
},

More information on the License Policy Plugin and usage.

--license-references Option

Dependency

The option --license-references is a sub-option of and requires the option
--license.

Details about the matched license or license rule are not included with the license
matches for license detections by default. These are instead reported optionally and
separately as codebase-level reference data. There are two codebase-level attributes
added with the --license-references option:

	license_references with details from scancode licenses (which are each a
.LICENSE file)

	license_rule_references with details from scancode license rules
(which are each a .RULE file)

Consider a file mit.txt with the following license declaration:

License: mit

We run the following scan on this file:

scancode -l --license-text --license-references mit.txt --json-pp mit.json

See the results for this license scan with --license-references enabled:

{
 "headers": [...],
 "license_detections": [
 {
 "identifier": "mit-3fce6ea2-8abd-6c6b-3ede-a37af7c6efee",
 "license_expression": "mit",
 "detection_count": 1
 }
],
 "license_references": [
 {
 "key": "mit",
 "language": "en",
 "short_name": "MIT License",
 "name": "MIT License",
 "category": "Permissive",
 "owner": "MIT",
 "homepage_url": "http://opensource.org/licenses/mit-license.php",
 "notes": "Per SPDX.org, this license is OSI certified.",
 "is_builtin": true,
 "is_exception": false,
 "is_unknown": false,
 "is_generic": false,
 "spdx_license_key": "MIT",
 "other_spdx_license_keys": [],
 "osi_license_key": null,
 "text_urls": [
 "http://opensource.org/licenses/mit-license.php"
],
 "osi_url": "http://www.opensource.org/licenses/MIT",
 "faq_url": "https://ieeexplore.ieee.org/document/9263265",
 "other_urls": [
 "https://opensource.com/article/18/3/patent-grant-mit-license",
 "https://opensource.com/article/19/4/history-mit-license",
 "https://opensource.org/licenses/MIT"
],
 "key_aliases": [],
 "minimum_coverage": 0,
 "standard_notice": null,
 "ignorable_copyrights": [],
 "ignorable_holders": [],
 "ignorable_authors": [],
 "ignorable_urls": [],
 "ignorable_emails": [],
 "text": "Permission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.",
 "scancode_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/mit.LICENSE",
 "licensedb_url": "https://scancode-licensedb.aboutcode.org/mit",
 "spdx_url": "https://spdx.org/licenses/MIT"
 }
],
 "license_rule_references": [
 {
 "license_expression": "mit",
 "identifier": "mit_30.RULE",
 "language": "en",
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/mit_30.RULE",
 "is_license_text": false,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": true,
 "is_license_intro": false,
 "is_continuous": false,
 "is_builtin": true,
 "is_from_license": false,
 "is_synthetic": false,
 "length": 2,
 "relevance": 100,
 "minimum_coverage": 100,
 "referenced_filenames": [],
 "notes": null,
 "ignorable_copyrights": [],
 "ignorable_holders": [],
 "ignorable_authors": [],
 "ignorable_urls": [],
 "ignorable_emails": [],
 "text": "License: MIT"
 }
],
 "files": [
 {
 "path": "mit.txt",
 "type": "file",
 "detected_license_expression": "mit",
 "detected_license_expression_spdx": "MIT",
 "license_detections": [
 {
 "license_expression": "mit",
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 2,
 "match_coverage": 100.0,
 "matcher": "1-hash",
 "license_expression": "mit",
 "rule_identifier": "mit_30.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/mit_30.RULE",
 "matched_text": "License: mit"
 }
],
 "identifier": "mit-3fce6ea2-8abd-6c6b-3ede-a37af7c6efee"
 }
],
 "license_clues": [],
 "percentage_of_license_text": 100.0,
 "scan_errors": []
 }
]
}

See Only reference License related data for more details on license references
and a comparison with previous scancode output formats.

--summary Option

Sub-Option

The option --summary-by-facet, --summary-key-files and
--summary-with-details``are sub-options of ``--summary. These Sub-Options are all
Post-Scan Options.

An example Scan:

scancode -clpieu --json-pp output.json samples --summary

The whole JSON file is structured as follows, when the --summary plugin is applied:

{
 "headers": [...],
 "summary": {
 "declared_license_expression": null,
 "license_clarity_score": {...},
 "declared_holder": "",
 "primary_language": "C",
 "other_license_expressions": [...],
 "other_holders": [...]
 "other_languages": [...]
 },
 "files": [...]
}

Each attribute in other_license_expressions, other_holders, other_languages
has multiple entries each containing “value” and “count”, with their values having
the summary information inside them.

See below a sample fully populated summary object:

{
 "summary": {
 "declared_license_expression": "commercial-license AND other-permissive AND mit",
 "license_clarity_score": {
 "score": 100,
 "declared_license": true,
 "identification_precision": true,
 "has_license_text": true,
 "declared_copyrights": true,
 "conflicting_license_categories": false,
 "ambiguous_compound_licensing": false
 },
 "declared_holder": "Strapi Solutions SAS",
 "primary_language": "JavaScript",
 "other_license_expressions": [
 {
 "value": "commercial-license AND other-permissive AND mit",
 "count": 65
 },
 {
 "value": "mit",
 "count": 7
 },
 {
 "value": null,
 "count": 1
 },
 {
 "value": "apache-2.0",
 "count": 1
 },
 {
 "value": "generic-cla",
 "count": 1
 }
],
 "other_holders": [
 {
 "value": null,
 "count": 3572
 },
 {
 "value": "Jon Schlinkert",
 "count": 2
 }
],
 "other_languages": [
 {
 "value": "TypeScript",
 "count": 91
 },
 {
 "value": "GAS",
 "count": 28
 },
 {
 "value": "HTML",
 "count": 6
 },
 {
 "value": "Bash",
 "count": 5
 },
 {
 "value": "verilog",
 "count": 1
 }
]
}

--tallies Option

Optional Dependency

The --tallies option does not have any required CLI option dependencies,
but as it contains license, copyright, holder, author, packages and
programming language information, it is recommended to use this option with
--license, --package, --copyright and --info options enabled,
or there will not be any corresponding data for these.

An example scan using the --tallies Plugin:

scancode -clipeu --json-pp strapi.json strapi-main/ --tallies

The JSON file containing the --tallies scan results are as follows:

{
 "headers": [...],
 "packages": [...],
 "dependencies": [...],
 "license_detections": [...],
 "tallies": {
 "detected_license_expression": [
 {
 "value": "commercial-license AND other-permissive AND mit",
 "count": 65
 },
 {
 "value": "mit",
 "count": 7
 },
 {
 "value": null,
 "count": 1
 },
 {
 "value": "apache-2.0",
 "count": 1
 },
 {
 "value": "generic-cla",
 "count": 1
 }
],
 "copyrights": [
 {
 "value": null,
 "count": 3572
 },
 {
 "value": "Copyright (c) Strapi Solutions SAS",
 "count": 31
 },
 {
 "value": "Copyright (c) Jon Schlinkert",
 "count": 2
 }
],
 "holders": [
 {
 "value": null,
 "count": 3572
 },
 {
 "value": "Strapi Solutions SAS",
 "count": 31
 },
 {
 "value": "Jon Schlinkert",
 "count": 2
 }
],
 "authors": [
 {
 "value": null,
 "count": 3567
 },
 {
 "value": "name' Strapi Solutions",
 "count": 30
 },
 {
 "value": "the community",
 "count": 4
 },
 {
 "value": "name' A Strapi developer",
 "count": 3
 },
 {
 "value": "name A Strapi",
 "count": 1
 },
 {
 "value": "name' Yurii Tykhomyrov",
 "count": 1
 }
],
 "programming_language": [
 {
 "value": "JavaScript",
 "count": 2854
 },
 {
 "value": "TypeScript",
 "count": 91
 },
 {
 "value": "GAS",
 "count": 28
 },
 {
 "value": "HTML",
 "count": 6
 },
 {
 "value": "Bash",
 "count": 5
 },
 {
 "value": "verilog",
 "count": 1
 }
],
 "packages": [...]
 },
 "files": [...]
}

This adds a top-level “tallius” attribute and the sub-attributes will be:

	
	“detected_license_expression”

	
	“copyrights”

	
	“holders”

	
	“authors”

	
	“programming_language”

	
	“packages”

These are all lists with the corresponding “value” and their respective “count”,
basically tallies of all different values.

--tallies-by-facet Option

Dependency

The option --tallies-by-facet is a sub-option of and requires the options --facet
and --tallies.

For users who want to know What is a Facet?.

Running the scan with --tallies --tallies-by-facet Plugins creates individual summaries for
all the facets with the same license, copyright and other scan information, at a codebase level
(in addition to the codebase level general summary generated by --tallies Plugin).
Once all files have been assigned a facet, files without a facet are assigned to
the core facet.

An example scan using the --tallies-by-facet Plugin:

scancode -clipeu --json-pp strapi.json strapi-main/ --tallies --facet dev="*.js" --facet dev="*.ts" --tallies-by-facet

We have used the github:strapi/strapi [https://github.com/strapi/strapi] project to generate exmaple results for
this CLI option.

Note

All other files which are not dev are marked to be included in the facet core.

A sample “summary_by_facet” object generated by the previous scan (shortened):

{
 "headers": [...],
 "packages": [...],
 "dependencies": [...],
 "license_detections": [...],
 "tallies": {...}
 "tallies_by_facet": [
 {
 "facet": "core",
 "tallies": {
 "detected_license_expression": [
 {
 "value": "commercial-license AND other-permissive AND mit",
 "count": 65
 },
 {
 "value": "mit",
 "count": 5
 },
 {
 "value": "generic-cla",
 "count": 1
 }
],
 "copyrights": [
 {
 "value": "Copyright (c) Strapi Solutions SAS",
 "count": 31
 }
],
 "holders": [
 {
 "value": "Strapi Solutions SAS",
 "count": 31
 }
],
 "authors": [
 {
 "value": "name' Strapi Solutions",
 "count": 30
 },
 {
 "value": "name' A Strapi developer",
 "count": 3
 },
 {
 "value": "name' Yurii Tykhomyrov",
 "count": 1
 },
 {
 "value": "the community",
 "count": 1
 }
],
 "programming_language": [
 {
 "value": "GAS",
 "count": 28
 },
 {
 "value": "TypeScript",
 "count": 7
 },
 {
 "value": "HTML",
 "count": 6
 },
 {
 "value": "Bash",
 "count": 5
 },
 {
 "value": "verilog",
 "count": 1
 }
]
 }
 },
 {
 "facet": "dev",
 "tallies": {
 "detected_license_expression": [
 {
 "value": "mit",
 "count": 2
 },
 {
 "value": "apache-2.0",
 "count": 1
 }
],
 "copyrights": [
 {
 "value": "Copyright (c) Jon Schlinkert",
 "count": 2
 }
],
 "holders": [
 {
 "value": "Jon Schlinkert",
 "count": 2
 }
],
 "authors": [
 {
 "value": "the community",
 "count": 3
 },
 {
 "value": "name A Strapi",
 "count": 1
 }
],
 "programming_language": [
 {
 "value": "JavaScript",
 "count": 2854
 },
 {
 "value": "TypeScript",
 "count": 84
 }
]
 }
 },
 {
 "facet": "tests",
 "tallies": {
 "detected_license_expression": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "programming_language": []
 }
 },
 {
 "facet": "docs",
 "tallies": {
 "detected_license_expression": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "programming_language": []
 }
 },
 {
 "facet": "data",
 "tallies": {
 "detected_license_expression": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "programming_language": []
 }
 },
 {
 "facet": "examples",
 "tallies": {
 "detected_license_expression": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "programming_language": []
 }
 }
],
 "files": [...]
}

Note

Summaries for all the facets are generated by default, regardless of facets not having any
files under them.

--tallies-key-files Option

Dependency

The option --tallies-key-files is a sub-option of and requires the options
--classify and --tallies.

An example Scan:

scancode -clipeu --json-pp strapi.json strapi-main/ --classify --tallies --tallies-key-files

Running the scan with --tallies --tallies-key-files plugins creates summaries for key files
with the same license, copyright and other scan information, at a codebase level (in addition
to the codebase level general summary generated by --tallies Plugin).

The resulting JSON file containing the scan results is structured as follows:

{
 "headers": [...],
 "packages": [...],
 "dependencies": [...],
 "license_detections": [...],
 "tallies": {...},
 "tallies_of_key_files": {
 "license_expressions": [
 {
 "value": null,
 "count": 1
 }
],
 "copyrights": [
 {
 "value": null,
 "count": 1
 }
],
 "holders": [
 {
 "value": null,
 "count": 1
 }
],
 "authors": [
 {
 "value": null,
 "count": 1
 }
],
 "programming_language": [
 {
 "value": null,
 "count": 1
 }
]
 },
 "files": [...]
}

These following flags for each file/directory is also present (generated by --classify)

	
	“is_legal”

	“is_manifest”

	
	“is_readme”

	“is_top_level”

	
	“is_key_file”

A key-file is a top-level file, that is either a legal (LICENSE/COPYING etc), manifest or a
readme file.

--tallies-with-details Option

The --tallies plugin summarizes license, copyright and other scan information at the
codebase level. Now running the scan with the --tallies-with-details plugin instead creates
summaries at individual file/directories with the same license, copyright and other scan
information, but at a file/directory level (in addition to the the codebase level summary).

An example Scan:

scancode -clipeu --json-pp strapi.json strapi-main/ --tallies-with-details

Note

The option --tallies-with-details is not a dependency of --tallies and can be used
individually. --tallies is redundant in a scan when --tallies-with-details is
already selected, because both of them add codebase-level tallies.

A sample scan result is structured as follows:

{
 "headers": [...],
 "packages": [...],
 "dependencies": [...],
 "license_detections": [...],
 "tallies": {...},
 "files": [
 {
 "path": "strapi-main",
 "type": "directory",
 "name": "strapi-main",
 "base_name": "strapi-main",
 "extension": "",
 "size": 0,
 "date": null,
 "sha1": null,
 "md5": null,
 "sha256": null,
 "mime_type": null,
 "file_type": null,
 "programming_language": null,
 "is_binary": false,
 "is_text": false,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "package_data": [],
 "for_packages": [],
 "detected_license_expression": null,
 "detected_license_expression_spdx": null,
 "license_detections": [],
 "license_clues": [],
 "percentage_of_license_text": 0,
 "copyrights": [],
 "holders": [],
 "authors": [],
 "emails": [],
 "urls": [],
 "facets": [],
 "is_legal": false,
 "is_manifest": false,
 "is_readme": false,
 "is_top_level": true,
 "is_key_file": false,
 "tallies": {
 "detected_license_expression": [
 {
 "value": "commercial-license AND other-permissive AND mit",
 "count": 65
 },
 {
 "value": "mit",
 "count": 7
 },
 {
 "value": null,
 "count": 1
 },
 {
 "value": "apache-2.0",
 "count": 1
 },
 {
 "value": "generic-cla",
 "count": 1
 }
],
 "copyrights": [
 {
 "value": null,
 "count": 3572
 },
 {
 "value": "Copyright (c) Strapi Solutions SAS",
 "count": 31
 },
 {
 "value": "Copyright (c) Jon Schlinkert",
 "count": 2
 }
],
 "holders": [
 {
 "value": null,
 "count": 3572
 },
 {
 "value": "Strapi Solutions SAS",
 "count": 31
 },
 {
 "value": "Jon Schlinkert",
 "count": 2
 }
],
 "authors": [
 {
 "value": null,
 "count": 3567
 },
 {
 "value": "name' Strapi Solutions",
 "count": 30
 },
 {
 "value": "the community",
 "count": 4
 },
 {
 "value": "name' A Strapi developer",
 "count": 3
 },
 {
 "value": "name A Strapi",
 "count": 1
 },
 {
 "value": "name' Yurii Tykhomyrov",
 "count": 1
 }
],
 "programming_language": [
 {
 "value": "JavaScript",
 "count": 2854
 },
 {
 "value": "TypeScript",
 "count": 91
 },
 {
 "value": "GAS",
 "count": 28
 },
 {
 "value": "HTML",
 "count": 6
 },
 {
 "value": "Bash",
 "count": 5
 },
 {
 "value": "verilog",
 "count": 1
 }
]
 },
 "files_count": 3604,
 "dirs_count": 1603,
 "size_count": 15175739,
 "scan_errors": []
 },
 {...}
]
}

Basic Tutorials

	How to Run a Scan
	Prerequisites

	Looking into Files

	Performing Extraction

	Deciding Scan Options

	Running The Scan

	Other Important Documentation

	How to Visualize Scan results

	How To Extract Archives
	Usage:

	All Extractcode Options

	How to specify Scancode Output Format
	JSON

	Print to stdout (Terminal)

	HTML

	Custom Output Format

	How to set what will be detected in Scan
	All “Basic” Scan Options

	Different Scans

	Add A Post-Scan Plugin
	Scan plugins in scancode-toolkit

	Built-In vs. Optional Installation

	Example Post-Scan Plugin: Hello ScanCode

	Load the plugin

	More-complex examples

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed
by default with Scancode.

Prerequisites

Refer to the Comprehensive Installation installation guide.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed
by default with Scancode Toolkit. Here’s the directory structure and respective files:

[image: ../_images/files_sample.png]
We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the
archive before running the scan, to also scan the files inside this package.

Performing Extraction

To extract the packages inside samples directory:

extractcode samples

This extracts the zlib.tar.gz package:

[image: ../_images/extractcode.png]

Note

Use the --shallow option to prevent recursive extraction of nested archives.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan,
according to your requirements.

	The basic scan options, i.e. -c or --copyright, -l or --license,
-p or --package, -e or --email, -u or --url, and -i
or --info cane be selected according to your requirements. If you do not
need one specific type of information (say, licenses), consider removing it
because the more options you scan for, the longer it will take for the scan
to complete.

	--license-score INTEGER is to be set if license matching accuracy is desired (Default is 0,
and increasing this means a more accurate match). Also, using --license-text includes the
matched text to the result.

	-n INTEGER option can be used to speed up the scan using multiple parallel processes.

	--timeout FLOAT option can be used to skip files taking a long time to scan.

	--ignore <pattern> can be used to skip certain group of files.

	<OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output
for specific tasks/have requirements. Here we are using json as ScanCode Workbench imports
json files only.

For the complete list of options, refer All Available Options.

Running The Scan

Now, run the scan with the options decided:

scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
 scan_start: 2019-09-24T203514.573671
 scan_end: 2019-09-24T203545.649805
 setup_scan:licenses: 4.30s
 setup: 4.30s
 scan: 26.62s
 total: 31.14s
Removing temporary files...done.

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	Reference Docs

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

How to Visualize Scan results

To help visualize the scans, we have a dedicated tool Scancode workbench [https://github.com/nexb/scancode-workbench/] which is a desktop application that allows you to visualize and explore the results of one or more scans. It is a cross-platform application that runs on Windows, Mac OS X and Linux. It is built using the Electron framework and is built using Electron, Typescript & React

Detailed Installation and Usage guide can be found here - Getting Started [https://scancode-workbench.readthedocs.io/en/develop/getting-started/index.html#getting-started]

Warning

This tutorial uses the 32.x version of Scancode Toolkit, and Scancode Workbench 4.0.x (This version of ScanCode Workbench is compatible with scans from any ScanCode Toolkit develop
version/branch at or after v32.x). If you are using an older version of Scancode Toolkit, check
respective versions of this documentation. Also refer the Scancode Workbench
release highlights [https://github.com/nexB/scancode-workbench/releases/].

How To Extract Archives

ScanCode Toolkit provides archive extraction. This command can be used before running a scan over
a codebase in order to ensure all archives are extracted. Archives found inside an extracted
archive are extracted recursively. Extraction is done in-place in a directory and named after the
archive with '-extract' appended.

[image: ../_images/scancode-toolkit-extract.png]

Usage:

extractcode [OPTIONS] <input>

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

extractcode samples

This extracts the zlib.tar.gz package:

[image: ../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

How to specify Scancode Output Format

A basic overview of formatting Scancode Output is presented here.

More information on Scancode Output Formats.

JSON

If you want JSON output of ScanCode results, you can pass the --json argument to ScanCode.
The following commands will output scan results in a formatted json file:

	scancode --json /path/to/output.json /path/to/target/dir

	scancode --json-pp /path/to/output.json /path/to/target/dir

	scancode --json-lines /path/to/output.json /path/to/target/dir

To compare the JSON output in different formats refer Comparing Different json Output Formats.

Print to stdout (Terminal)

If you want to format the output in JSON and print it at stdout, you can replace the JSON filename
with a “-”, like --json-pp - instead of --json-pp output.json.

The following command will output the scan results in JSON format to stdout (In the Terminal):

./scancode -clpieu --json-pp - samples/

HTML

If you want HTML output of ScanCode results, you can pass the --html argument to ScanCode.
The following commands will output scan results in a formatted HTML page or simple web application:

	scancode --html /path/to/output.html /path/to/target/dir

	scancode --html-app /path/to/output.html /path/to/target/dir

For more details on the HTML output format refer --html FILE.

Warning

The --html-app option has been deprecated, use Scancode Workbench instead.

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to
create their own output template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path
to the custom template to the --custom-template argument, or drop it in a folder to
src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the
particular data I wish to see. In this case, I am only interested in the license and copyright
data for this particular scan.

template.txt:
[
 {% if files.license_copyright %}
 {% for location, data in files.license_copyright.items() %}
 {% for row in data %}
 location:"{{ location }}",
 {% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
 {% endfor %}
 {% endfor %}
 {% endif %}
]

.. note::

 File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$ scancode -clpeui --custom-output output.txt --custom-template template.txt samples
Scanning files...
 [####################################] 46
Scanning done.

Now the results are saved in output.txt and we can easily view them with head output.txt:

[
 location:"samples/JGroups/LICENSE",
 copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

 location:"samples/JGroups/LICENSE",
 copyright:"copyrighted by the Free Software Foundation",
]

For a more elaborate template, refer this default template [https://github.com/nexB/scancode-toolkit/blob/develop/src/formattedcode/templates/html/template.html]
given with Scancode, to generate HTML output with the --html output format option.

Documentation on Jinja templates [https://jinja.palletsprojects.com/en/2.10.x/].

How to set what will be detected in Scan

ScanCode allows you to scan a codebase for license, copyright and other interesting information
that can be discovered in files. The following options are available for detection when using
ScanCode Toolkit:

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--license-references

	--license-text

	--license-text-diagnostics

	--license-diagnostics

	--license-url-template TEXT

	--license-score INT

	--license-clarity-score

	--consolidate

	--unknown-licenses

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	--system-package

	Scan <input> for installed system package
databases.

	--package-only

	Scan <input> for system and application
only for package metadata, without license/
copyright detection and package assembly.

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Scan for and include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any combination of these
options are used, ScanCode performs only that specific task, and not the others.
scancode -l scans only for licenses, and doesn’t scan for copyright/packages/general
information/emails/urls. The only notable exception: a --package scan also has
license information for package manifests and top-level packages, which are derived
regardless of --license option being used.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
scancode -c -i -p, you can write scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of: --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of: --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or smaller number of matches).

Sub-Option of: --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of: --license

Sub-Options:

	--license-text-diagnostics

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: default: https://scancode-licensedb.aboutcode.org/{}]

Sub-Option of: --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of: --license and --license-text

	--license-diagnostics

	In license detections, include diagnostic details to figure out the
license detection post processing steps applied.

Sub-Option of: --license

	--unknown-licenses

	[EXPERIMENTAL] Detect unknown licenses.

Sub-Option of: --license

Different Scans

The following examples will use the samples directory that is provided with the ScanCode
Toolkit code [https://github.com/nexB/scancode-toolkit/tree/develop/samples]. All examples will
be saved in the JSON format, which can be loaded into Scancode Workbench for visualization. See
How to Visualize Scan results for more information. Another output format option is a
static html file. See Scancode Output Formats for more information.

Scan for all clues:

To scan for licenses, copyrights, urls, emails, package information, and file information

scancode -clipeu --json output.json samples

Scan for license and copyright clues:

scancode -cl --json-pp output.json samples

Scan for emails and URLs:

scancode -eu --json-pp output.json samples

Scan for package information:

scancode -p --json-pp output.json samples

Scan for file information:

scancode -i --json-pp output.json samples

To see more example scans:

scancode --examples

For more information, refer All Available Options.

Add A Post-Scan Plugin

Scan plugins in scancode-toolkit

A lot of scancode features are built-in plugins which are present with scancode-toolkit source code
and are usually enabled via the different scancode-toolkit CLI options and are grouped by the types
of plugins.

Here are the major types of plugins:

	Pre-scan plugins (scancode_pre_scan in entry points)

These plugins are run before the main scanning steps and are usually
filtering of input files, or file classification steps, on whose results
the main scan plugins depend on. The base plugin class to be extended is PreScanPlugin at
/src/plugincode/pre_scan.py [https://github.com/nexB/plugincode/blob/main/src/plugincode/pre_scan.py].

	Scan plugins (scancode_scan in entry points)

The are the scancode plugins which does the file scanning for useful
information like license, copyrights, packages and others. These are
run on multiprocessing for speed as they are done on a per-file basis,
but there can also be post-processing steps on these which are run afterwards
and have access to all the per-file scan results. The base plugin class to be extended is
ScanPlugin at /src/plugincode/scan.py [https://github.com/nexB/plugincode/blob/main/src/plugincode/scan.py].

	Post-scan plugins (scancode_post_scan in entry points)

These are mainly data processing, summerizing and reporting plugins which
depend on all the results for the scan plugins. These add new codebase level
or file-level attributes, and even removes/modifies data as required
for consolidation or summarization. The base plugin class to be extended is PostScanPlugin
at /src/plugincode/post_scan.py [https://github.com/nexB/plugincode/blob/main/src/plugincode/post_scan.py].

	Output plugins (scancode_output in entry points)

Supported output options in scancode-toolkit are all plugins and
these can also be multiple output options selected. These convert, process
and writes the data in the specific file format as the output of the scanning
procedures. The base plugin class to be extended is OutputPlugin at
/src/plugincode/output.py [https://github.com/nexB/plugincode/blob/main/src/plugincode/output.py].

	Output Filter Plugins (scancode_output_filter in entry points)

There are also output filter plugins which apply filters to the outputs
and is modified. These filters can be based on whether resources had any
detections, ignorables present in licenses and others.
The base plugin class to be extended is OutputFilterPlugin at
/src/plugincode/output_filter.py [https://github.com/nexB/plugincode/blob/main/src/plugincode/output_filter.py].

	Location Provider Plugins

These plugins provide pre-built binary libraries and utilities and their locations which
are packaged to be used in scancode-toolkit. The base plugin class to be extended is
LocationProviderPlugin at /src/plugincode/location_provider.py [https://github.com/nexB/plugincode/blob/main/src/plugincode/location_provider.py].

Built-In vs. Optional Installation

Built-In

Some post-scan plugins are installed when ScanCode itself is installed, and they are specified at
[options.entry_points] in the setup.cfg [https://github.com/nexB/scancode-toolkit/blob/develop/setup.cfg] file.
For example, the License Policy Plugin is a built-in plugin, whose code is located here:

https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/plugin_license_policy.py

These plugins do not require any additional installation steps and can be used as soon as ScanCode
is up and running.

Optional

ScanCode is also designed to use post-scan plugins that must be installed separately from the
installation of ScanCode. The code for this sort of plugin is located here:

https://github.com/nexB/scancode-plugins

This wiki page will focus on optional post-scan plugins.

Example Post-Scan Plugin: Hello ScanCode

To illustrate the creation of a simple post-scan plugin, we’ll create a hypothetical plugin named
Hello ScanCode, which will print Hello ScanCode! in your terminal after you’ve run a scan.
Your command will look like something like this:

scancode -i -n 2 <path to target codebase> --hello --json <path to JSON output file>

We’ll start by creating three folders:

	Top-level folder – /scancode-hello/

	2nd-level folder – /src/

	3rd-level folder – /hello_scancode/

1. Top-level folder – /scancode-hello/

	In the scancode-plugins repository, in the misc directory, add a folder with
a relevant name, e.g., scancode-hello. This folder will hold all of your plugin code.

	Inside the /scancode-hello/ folder you’ll need to add a folder named src and 7 files.
/src/ – This folder will contain your primary Python code and is discussed in more detail
in the following section.

The 7 Files are:

	.gitignore – See, e.g.,
/scancode-ignore-binaries/.gitignore [https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-ignore-binaries/.gitignore]

/build/
/dist/

	apache-2.0.LICENSE – See, e.g.,
/scancode-ignore-binaries/apache-2.0.LICENSE [https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-ignore-binaries/apache-2.0.LICENSE]

	MANIFEST.in

graft src

include setup.py
include setup.cfg
include .gitignore
include README.md
include MANIFEST.in
include NOTICE
include apache-2.0.LICENSE

global-exclude *.py[co] __pycache__ *.*~

	NOTICE – See, e.g.,
/scancode-ignore-binaries/NOTICE [https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-ignore-binaries/NOTICE]

	README.md

	setup.cfg

[metadata]
license_file = NOTICE

[bdist_wheel]
universal = 1

[aliases]
release = clean --all bdist_wheel

	setup.py – This is an example of what our setup.py file would look like:

#!/usr/bin/env python
-*- encoding: utf-8 -*-

from __future__ import absolute_import
from __future__ import print_function

from glob import glob
from os.path import basename
from os.path import join
from os.path import splitext

from setuptools import find_packages
from setuptools import setup

desc = '''A ScanCode post-scan plugin to to illustrate the creation of a simple post-scan plugin.'''

setup(
 name='scancode-hello',
 version='1.0.0',
 license='Apache-2.0 with ScanCode acknowledgment',
 description=desc,
 long_description=desc,
 author='nexB',
 author_email='info@aboutcode.org',
 url='https://github.com/nexB/scancode-plugins/blob/main/misc/scancode-hello/',
 packages=find_packages('src'),
 package_dir={'': 'src'},
 py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')],
 include_package_data=True,
 zip_safe=False,
 classifiers=[
 # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers
 'Development Status :: 4 - Beta',
 'Intended Audience :: Developers',
 'License :: OSI Approved :: Apache Software License',
 'Programming Language :: Python',
 'Programming Language :: Python :: 3',
 'Topic :: Utilities',
],
 keywords=[
 'scancode', 'plugin', 'post-scan'
],
 install_requires=[
 'scancode-toolkit',
],
 entry_points={
 'scancode_post_scan': [
 'hello = hello_scancode.hello_scancode:SayHello',
],
 }
)

2. 2nd-level folder – /src/

	Add an __init__.py file inside the src folder. This file can be empty, and is used to
indicate that the folder should be treated as a Python package directory.

	Add a folder that will contain our primary code – we’ll name the folder hello_scancode.
If you look at the example of the setup.py file above, you’ll see this line in the
entry_points section:

'hello = hello_scancode.hello_scancode:SayHello',

	hello refers to the name of the command flag.

	The first hello_scancode is the name of the folder we just created.

	The second hello_scancode is the name of the .py file containing our code (discussed in
the next section).

	SayHello is the name of the PostScanPlugin class we create in that file (see sample
code below).

3. 3rd-level folder – /hello_scancode/

	Add an __init__.py file inside the hello_scancode folder. As noted above, this file can
be empty.

	Add a hello_scancode.py file.

Imports

from plugincode.post_scan import PostScanPlugin
from plugincode.post_scan import post_scan_impl
from scancode import CommandLineOption
from scancode import POST_SCAN_GROUP

Create a PostScanPlugin class

The PostScanPlugin class
PostScanPlugin code [https://github.com/nexB/plugincode/blob/main/src/plugincode/post_scan.py])
inherits from the CodebasePlugin class (see
CodebasePlugin code [https://github.com/nexB/plugincode/blob/main/src/plugincode/__init__.py]),
which inherits from the BasePlugin class (see
BasePlugin code [https://github.com/nexB/plugincode/blob/main/src/plugincode/__init__.py]).

@post_scan_impl
class SayHello(PostScanPlugin):
 """
 Illustrate a simple "Hello World" post-scan plugin.
 """

 options = [
 CommandLineOption(('--hello',),
 is_flag=True, default=False,
 help='Generate a simple "Hello ScanCode" greeting in the terminal.',
 help_group=POST_SCAN_GROUP)
]

 def is_enabled(self, hello, **kwargs):
 return hello

 def process_codebase(self, codebase, hello, **kwargs):
 """
 Say hello.
 """
 if not self.is_enabled(hello):
 return

 print('Hello ScanCode!!')

Load the plugin

	To load and use the plugin in the normal course, navigate to the plugin’s root folder (in this
example: /plugins/scancode-hello/) and run pip install . (don’t forget the final .).

	If you’re developing and want to test your work, save your edits and run pip install -e .
from the same folder.

More-complex examples

This Hello ScanCode example is quite simple. For examples of more-complex structures and
functionalities you can take a look at the other post-scan plugins for guidance and ideas.

One good example is the License Policy post-scan plugin. This plugin is installed when ScanCode
is installed and consequently is not located in the /plugins/ directory used for
manually-installed post-scan plugins. The code for the License Policy plugin can be found at
/scancode-toolkit/src/licensedcode/plugin_license_policy.py [https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/plugin_license_policy.py]
and illustrates how a plugin can be used to analyze the results of a ScanCode scan using external
data files and add the results of that analysis as a new field in the ScanCode JSON output file.

How-To Guides

	How To Add a New License for Detection
	How to add a new license for detection?

	How to Add New License Rules for Enhanced Detection
	How to add a new license detection rule?

	How to Install External Licenses to Use in License Detection
	How to install a plugin containing external licenses and/or rules

	How to add external licenses and/or rules from a directory

	scancode-reindex-licenses Usage

	Options

	How To Generate Attribution from a ScanCode Scan
	How To generate attribution from a ScanCode scan?

How To Add a New License for Detection

How to add a new license for detection?

To add a new license, you first need to select a new and unique license key
(mit and gpl-2.0 are some of the existing license keys).

The key name can contain only these symbols:

	lowercase letters from a to z,

	numbers from 0 to 9,

	dash - and . period signs. No spaces or underscore.

The license key also has to be fewer than 50 characters (same for short_name).

We also have to add a spdx_license_key which is either a valid SPDX license key at
` The SPDX license list <https://spdx.org/licenses/>`_, or a Licenseref-scancode-<key>.

All licenses are stored as a plain text file in the src/licensedcode/data/licenses
directory using their key as base for the file name. For example the filename for a
license with key: mit would be mit.LICENSE.

You need to create a file with:

	the text of the license saved in plain text. We usually get rid of HTML tags or
other special characters. We also remove copyrights and only keep the original
text as is, with the original formatting intact.

	the data attributes for the license in YAML format as
YAML frontmatter [https://python-frontmatter.readthedocs.io/en/latest/].

See an example license: apache-2.0.LICENSE [https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/apache-2.0.LICENSE]

There are a couple of mandatory attributes:

	key

	spdx_license_key

	short_name

	name

	category (Use “Unstated License” if not known)

	owner (Use “Unspecified” if not known)

And more attributes which are not mandatory but always nice to have (if applicable):

	other_spdx_license_keys

	osi_license_key

	minimum_coverage

	standard_notice

	notes

We want to use minimum_coverage when there are other licenses that are very similar
and we want to make sure we match these licenses correctly, and notes for interesting
cases of licenses with descriptions to help identify origin, similarities to other licenses,
notes about the SPDX keys and others.

Some URLs:

	homepage_url

	text_urls

	osi_url

	faq_url

	other_urls

Also attributes having ignorables in the license text:

	ignorable_urls

	ignorable_copyrights

	ignorable_authors

	ignorable_holders

	ignorable_emails

See the src/licensedcode/data/licenses/ directory for many more examples.

Note

Add licenses in a local development installation and run scancode-reindex-licenses
to make sure we reindex the licenses and this validates the new licenses.

How to Add New License Rules for Enhanced Detection

ScanCode relies on license rules to detect licenses. A rule is a simple text
file containing a license text or notice or mention with YAML frontmatter with data
attributes that tells ScanCode which license expression to report when the text
is detected, and other properties.

See the FAQ for a high level description of adding license detection rules.

How to add a new license detection rule?

A license detection rule is a file with:

	a plain text that is typically a variant of a license text, notice or license
mention.

	data as YAML frontmatter documenting license expression and other
rule attributes.

To add a new rule, you need to pick a unique base file name. As a convention, we
like to include the license expression that should be detected in that name to
make it more descriptive. For example: mit_and_gpl-2.0 is a good base name for a
rule that would detect an MIT and GPL-2.0 license combination at once. Add a
suffix (usually numeric) to make it unique if there is already a rule with
this base name. Do not use spaces or special characters in that name.

Then create the rule file in the src/licensedcode/data/rules/ directory using
this name; for example a rule with license_expression as mit AND apache-2.0
might have a filename: mit_and_apache-2.0_10.RULE.

Save your rule text in this file; if there are specific words like company names,
projects or other, it is better to have rules with and without these so we have
better detection.

For a simple mit AND apache-2.0 license expression detection, here is an example
rule file:

license_expression: mit AND apache-2.0
is_license_notice: yes
relevance: 100
referenced_filenames:
 - LICENSE

License
The MIT License (MIT) + Apache 2.0. Read LICENSE.

See the src/licensedcode/data/rules/ directory for many examples.

More (advanced) rules options:

	you can use a notes text field to document this rule and explain where you
found it first.

	if no license should be detected for your .RULE text, do not add a license expression,
just add a notes field.

	Each rule needs to have one flag to describe the type of license rule. The options are:

	is_license_notice

	is_license_text

	is_license_tag

	is_license_reference

	is_license_intro

	There can also be false positive rules, which if detected in the file scanned, will not
be present in the result license detections. These just have the license text and a
is_false_positive flag set to True.

	you can specify key phrases by surrounding one or more words between the {{
and }} tags. Key phrases are words that must be matched/present in order
for a RULE to be considered a match.

See the src/licensedcode/models.py directory for a list of all possible values
and other options.

Note

Add rules in a local developement installation and run scancode-reindex-licenses
to make sure we reindex the rules and this validates the new licenses.

How to Install External Licenses to Use in License Detection

Users can install external licenses and rules in the form of:

	reusable plugins

	license directories

These licenses and rules are then used in license detection.

How to install a plugin containing external licenses and/or rules

To create a plugin with external licenses or rules, we must create a Python package
containing the license and/or rule files. Python packages can have many different
file structures. You can find an example package in:

tests/licensedcode/data/additional_licenses/additional_plugin_1.

This is the basic structure of the example plugin:

licenses_to_install1/
├── src/
│ └── licenses_to_install1/
│ ├── licenses/
│ │ ├── example-installed-1.LICENSE
| ├── rules/
│ │ ├── example-installed-1.RULE
│ └── __init__.py
├── apache-2.0.LICENSE
├── MANIFEST.in
├── setup.cfg
└── setup.py

Entry points definition in setup.py

First, in setup.py, you must provide an entry point called scancode_location_provider.
This allows ScanCode Toolkit to discover the plugin and use it in license detection.
Here is the definition of entry_points in setup.py:

entry_points={
 'scancode_location_provider': [
 'licenses_to_install1 = licenses_to_install1:LicensesToInstall1Paths',
],
 },

The scancode_location_provider entry point maps to a list with information about the plugin.
The variable licenses_to_install1 is the name of the entry point. All entry point names
must start with the prefix licenses, or else ScanCode Toolkit will not use them in
license detection.

Directory structure

licenses_to_install1 is set to licenses_to_install1:LicensesToInstall1Paths.
Note that in src, we have another directory called licenses_to_install1 and in
licenses_to_install1/__init__.py, we define the class LicensesToInstall1Paths.
These two values make up the entry point definition.

LicensesToInstall1Paths is a subclass of LocationProviderPlugin and
implements the method get_locations(). The class you define in __init__.py
must also subclass LocationProviderPlugin and implement this method.

Finally, the same directory containing the class definition must also contain the
licenses and/or rules. Licenses must be contained in a directory called licenses and rules
must be contained in a directory called rules.

See How To Add a New License for Detection and How to Add New License Rules for Enhanced Detection to understand
the structure of license and rule files, respectively.

After creating this plugin, you can upload it to PyPI so that others can use it, or you can
leave it as a local directory.

Installing and using the plugin

To use the plugin in license detection, all you need to do is:

	Configure the scancode-toolkit virtualenv and activate.

	Install the package with pip like the following:
pip install tests/licensedcode/data/additional_licenses/additional_plugin_2/

	Reindex licenses using scancode-reindex-licenses.

Note

Installing the plugin will not add the licenses/rules to the
index automatically, they will be indexed only after running
scancode-reindex-licenses.

Once it is installed, the contained licenses and rules will automatically be used in
license detection assuming the plugin follows the correct directory structure conventions.

Writing tests for new installed licenses

Look at tests/licensedcode/data/example_external_licenses/licenses_to_install1 to see
an example of a plugin with tests. The tests are contained in the tests directory:

licenses_to_install1/
├── src/
│ └── licenses_to_install1/
│ ├── licenses/
│ │ ├── example-installed-1.LICENSE
│ ├── rules/
│ │ ├── example-installed-1.RULE
│ └── __init__.py/
├── tests/
│ ├── data/
│ │ ├── example-installed-1.txt
│ │ └── example-installed-1.txt.yml
│ └── test_detection_datadriven.py
├── apache-2.0.LICENSE
├── MANIFEST.in
├── setup.cfg
└── setup.py

To write your own tests, first make sure setup.py includes scancode-toolkit
as a dependency:

...
install_requires=[
 'scancode-toolkit',
],
...

Then you can define a test class and call the build_tests method defined in
licensedcode_test_utils, passing in the test directory and the test class as parameters:

TEST_DIR = abspath(join(dirname(__file__), 'data'))

class TestLicenseDataDriven1(unittest.TestCase):
 pass

licensedcode_test_utils.build_tests(
 TEST_DIR,
 clazz=TestLicenseDataDriven1, regen=scancode_config.REGEN_TEST_FIXTURES)

The tests/data directory contains one file for each license:
a license text file with a YAML frontmatter specifying the expected license expression
from the test.

Finally, install the plugin and run the test:

pytest -vvs tests/test_detection_datadriven.py.

Note

Once you install a external license plugin, you have to reconfigure
scancode-toolkit (or use pip uninstall) to uninstall the plugin to
completely remove it. Otherwise using the –only-builtin option only
regenerates the index without the installed plugins, but another Reindex
would have the licenses/rules from the installed plugins.

How to add external licenses and/or rules from a directory

This is the basic structure of the example license directory:

additional_license_directory/
├── licenses/
│ ├── example-installed-1.LICENSE
├── rules/
│ ├── example-installed-1.RULE

Adding the licenses to the index

To add the licenses in the directory to the index, all you need to do is:

	Configure the scancode-toolkit virtualenv and activate.

	Run scancode-reindex-licenses with:

--additional-directory tests/licensedcode/data/additional_licenses/additional_dir/

Note

Adding licenses/rules from an additional directory is not permanent.
Another reindexing without the additional directory option would
just use the builtin scancode licenses and rules, and will not have
these additonal licenses/rules anymore.

Once the licenses/rules are in the index, they will automatically be used in license detection.

scancode-reindex-licenses Usage

Usage: scancode-reindex-licenses [OPTIONS]

Reindex scancode licenses and exit

Options

	--all-languages

	[EXPERIMENTAL] Rebuild the license index
including texts all languages (and not only
English) and exit.

	--only-builtin

	Rebuild the license index excluding any
additional license directory or additional
license plugins which were added previously, i.e.
with only builtin scancode license and rules.

	--additional-directory DIR

	Include this directory with additional custom
licenses and license rules in the license
detection index.

	--load-dump

	Load all license and rules from their respective
files and then dump them back to those same files.

	-h, --help

	Shows the options and explanations.

How To Generate Attribution from a ScanCode Scan

How To generate attribution from a ScanCode scan?

Users can use an Open Source Project “AboutCode Toolkit” to generate
attrbution document from a ScanCode scan.

Read more about AboutCode Toolkit here: https://aboutcode-toolkit.readthedocs.io/.

Check out the code at https://github.com/nexB/aboutcode-toolkit

Command in AboutCode Toolkit to generate attribution:
https://aboutcode-toolkit.readthedocs.io/en/latest/reference.html#attrib.

Attention

The attribution requires the ScanCode scan to have at least the –info
and –license option flagged

Contribute

	Contributing to Code Development
	Code layout and conventions

	Running tests

	Thirdparty libraries and dependencies management

	Using ScanCode as a Python library

	How to cut a new release
	Update version

	Tag and publish

	Automated Release Process

	Contributing to the Documentation
	Setup Local Build

	Share Document Improvements

	Continuous Integration

	Style Checks Using Doc8

	Interspinx

	Style Conventions for the Documentaion

	Converting from Markdown

	Automatic Docs Generation

	Roadmap
	Legend

	Work in Progress

	Other work in progress

	Completed features

	Google Summer of Code 2017 - Final report
	Project: Plugin architecture for ScanCode

	1. Format :

	2. Post-scan :

	3. Pre-scan :

	4. Scan (proper):

	5. Other work:

	6. What’s left?

	Google Summer of Code 2019 - Final report
	Project: scancode-toolkit to Python 3

	Overview

	Implementation

	Challenging part of Project

	Outcome

	Google Summer of Code 2021 Final report
	Organisation - AboutCode

	Project: Detect Unknown Licenses and Indirect License References in Scancode

	Description

	Pre-GSoC

Contributing to Code Development

TL;DR:

	Contributions comes as bugs/questions/issues and as pull requests.

	Source code and runtime data are in the /src/ directory.

	Test code and test data are in the /tests/ directory.

	Datasets (inluding licenses) and test data are in /data/ sub-directories.

	We use DCO signoff in commit messages, like Linux does.

	Porting ScanCode to other OS (FreeBSD is supported, etc.) is possible. Enter an issue for help.

See CONTRIBUTING.rst [https://github.com/nexB/scancode-toolkit/blob/develop/CONTRIBUTING.rst]
for details.

Code layout and conventions

Source code is in the src/ directory, tests are in the tests/ directory.
Miscellaneous scripts and configuration files are in the etc/ directory.

There is one Python package for each major feature under src/ and a
corresponding directory with the same name under tests (but this is not a
package by design as it would not make sense to have a top level “tests” package
which is a name that’s too common).

Each test script is named test_XXXX; we prefer organizing tests in subclasses
of the standard library unittest module. But we also use plain functions
that are discovered nicely by pytest.

When source or tests need data files, we store these in a data subdirectory.
This is used extensively in tests and also in source code for the reference
license texts and data and license detection rules files.

We use PEP8 conventions with a relaxed line length that can be up to 90’ish
characters long when needed to keep the code clear and readable.

We write tests, a lot of tests, thousands of tests. When finding bugs or adding
new features, we add tests. See existing test code for examples which form also
a good specification for the supported features.

The tests should pass on Linux 64 bits, Windows 64 bits and on
macOS 10.14 and up. We maintain multiple CI loops with Azure (all OSes)
at https://dev.azure.com/nexB/scancode-toolkit/_build and Appveyor (Windows) at
https://ci.appveyor.com/project/nexB/scancode-toolkit .

Several tests are data-driven and use data files as test input and sometimes
data files as test expectation (in this case using either JSON or YAML files);
a large number of copyright, license and package manifest parsing tests are such
data-driven tests.

Running tests

ScanCode comes with over 29,000 unit tests to ensure detection accuracy and
stability across Linux, Windows and macOS OSes: we kinda love tests, do we?

We use pytest to run the tests: call the pytest script to run the whole
test suite. This is installed with the pytest package which is installed
when you run ./configure --dev).

If you are running from a fresh git clone and you run ./configure and then
source venv/bin/activate the pytest command will be available in your path.

Alternatively, if you have already configured but are not in an activated
“virtualenv” the pytest command is available under
<root of your checkout>/venv/bin/pytest

(Note: paths here are for POSIX, but mostly the same applies to Windows)

If you have a multiprocessor machine you might want to run the tests in parallel
(and faster). For instance: pytest -n4 runs the tests on 4 CPUs. We
typically run the tests in verbose mode with pytest -vvs -n4.

You can also run a subset of the test suite as shown in the CI configs
https://github.com/nexB/scancode-toolkit/blob/develop/azure-pipelines.yml e,g,
pytest -n 2 -vvs tests/scancode runs only the test scripts present in the
tests/scancode directory. (You can give the path to a specific test script
file there too).

See also https://docs.pytest.org for details or use the pytest -h command
to show the many other options available.

One useful option is to run a select subset of the test functions matching a
pattern with the -k option, for instance: pytest -vvs -k tcpdump would
only run test functions that contain the string “tcpdump” in their name or their
class name or module name.

Another useful option after a test run with some failures is to re-run only the
failed tests with the --lf option, for instance: pytest -vvs --lf would
only run only test functions that failed in the previous run.

Because we have a lot of tests (over 29,000), we organized theses in test suites
using pytest markers that are defined in the conftest.py pytest plugin.
These are enabled by adding a --test-suite option to the pytest command.

	--test-suite=standard is the default and runs a decent but basic test suite

	--test-suite=all runs the standard test and adds a comprehensive test suite

	--test-suite=validate runs the standra and all test and adds
extensive data-driven and data validations (for package, copyright and license
detection)

In some cases we need to regenerate test data when expected behavious/result data
structures change, and we have an environement variable to regenerate test data.
SCANCODE_REGEN_TEST_FIXTURES is present in scancode_config and this can be
set to regenerate test data for specific tests like this:

SCANCODE_REGEN_TEST_FIXTURES=yes pytest -vvs tests/packagedcode/test_package_models.py

This command will only regenerate test data for only the tests in test_package_models.py,
and we can further specify the tests to regen by using more pytest options like –lf and
-k test_instances.

If test data is regenerated, it is important to review the diff for test files and
carefully go through all of it to make sure there are no unintended changes there,
and then commit all the regenerated test data.

To help debug in scancode, we use logging. There are different environement variables
you need to set to turn on logging. In packagedcode:

``SCANCODE_DEBUG_PACKAGE=yes pytest -vvs tests/packagedcode/ --lf``

Or set the TRACE variable to True. This enables logger_debug functions
logging variables and shows code execution paths by logging and printing the logs
in the terminal. If debugging full scans run by click, you have to raise exceptions
in addition to setting the TRACE to enable logging.

Thirdparty libraries and dependencies management

ScanCode uses the configure and configure.bat scripts to install a
virtualenv [https://virtualenv.pypa.io/en/stable/] , install required
packaged dependencies using setuptools [https://github.com/pypa/setuptools]
and such that ScanCode can be installed in a repeatable and consistent manner on
all OSes and Python versions.

For this we maintain a setup.cfg with our direct dependencies with loose
minimum version constraints; and we keep pinned exact versions of these
dependencies in the requirements.txt and requirements-dev.txt (for
testing and development).

Note: we also have a setup-mini.cfg used to create a ScanCode PyPI package
with minimal dependencies (and limited features). This is mostly duplicated
from setup.cfg.

And to ensure that we also all use well known version of the core virtualenv,
pip, setuptools and wheel libraries, we use the virtualenv.pyz Python
zipp app from https://github.com/pypa/get-virtualenv/tree/main/public and
store it in the Git repo in the etc/thirdparty directory.

We bundle pre-built bundled native binaries as plugins which are installed as
wheels. These binaries are organized by OS and architecture; they ensure that
ScanCode works out of the box either using a checkout or a download, without
needing a compiler and toolchain to be installed.

The corresponding source code and build scripts for all for the
pre-built binaries are stored in a separate repository at
https://github.com/nexB/scancode-plugins

ScanCode app archives should not require network access for installation or
configuration of its third-party libraries and dependencies. To enable this,
we store bundled thirdparty components and libraries in the thirdparty
directory of released app archives; this is done at build time.
These dependencies are stored as pre-built wheels. These wheels are sometimes
built by us when there is no wheel available upstream on PyPI. We store all
these prebuilt wheels with corresponding .ABOUT and .LICENSE files in
https://github.com/nexB/thirdparty-packages/tree/main/pypi which is published
for download at https://thirdparty.aboutcode.org/pypi/

Because this is used by the configure script, all the thirdparty dependencies
used in ScanCode MUST be available there first. Therefore adding a new
dependency means requesting a merge/PR in
https://github.com/nexB/thirdparty-packages/ first that contains all the
recursive dependencies.

There are utility scripts in etc/release that can help with the dependencies
management process in particular to build or update wheels with native code for
multiple OSes (Linux, macOS and Windows) and multiple Python versions (3.8+),
which is not a completely simple operation (and requires eventually 12 wheels
and one source distribution to be published as we support 3 OSes and 5 Python
versions).

Using ScanCode as a Python library

ScanCode can be used also as a Python library and is available as a
Python wheel in PyPi and installed with pip install scancode-toolkit or
pip install scancode-toolkit-mini.

Since we do not pin dependencies to avoid dependency resolution conflicts
for downstream users, there are possibilities of issues arising from
dependencies silently changing API/functions which scancode uses.

How to cut a new release

Update version

	Bump version to update major, minor or patch version in setup.cfg
setup-mini.cfg and src/scancode_config.py. Note that this is SemVer,
though we used CalVer previously, we have switched back to SemVer.

	If scancode output data format is changed, increment manually the major,
minor or patch version to bump the version in src/scancode_config.py.
Note that this is SemVer.

See our :ref:versioning for more details.

Tag and publish

	Changes for a release should also be pushed to a branch and a Pull
Request should be created for it, for review.

	Update the CHANGELOG.rst with detailed documentation of updates
and API/CLI option changes, or any significant changes.

	Commit these changes and push changes to develop (here we use an
example tag v1.6.1):

	git commit -s

	git push --set-upstream origin release-prep-v1.6.1

	Merge this release-prep-v1.6.1 branch in develop after review approval
and tag the release:

	git tag -a v1.6.1 -m "Release v1.6.1"

	git push --set-upstream origin release-prep-v1.6.1

	git push --set-upstream origin v1.6.1

Automated Release Process

	We have an automated release script [https://github.com/nexB/scancode-toolkit/actions/workflows/scancode-release.yml]
triggered by a pushed tag, where jobs run to:

	Build pypi wheels and sdist archives

	Build app release archives for linux/mac/windows

	This happens for all supported python versions

	Test these wheels and app archives in linux/mac/windows for all supported
versions of python

	Create a GitHub release (draft by default) with all wheels, sdists and app archives
(for all os/python combinations)

	Upload sdists and wheels (all python versions) and publish a release
(This won’t be a stable release for beta/release-candidate tags)

	Populate the draft GitHub release by clicking the Generate Release Notes button
and this pre-populates the release notes with PRs and contributors.

	Add more details to the release notes talking about the key features and changes in the
release.

	Publish the release on GitHub
(Note the Set as a pre-release vs Set as the latest release checkboxes)

	Announce in public channels and chats about the release

	Do test the release archives yourself.

Contributing to the Documentation

Setup Local Build

To get started, create or identify a working directory on your local machine.

Open that directory and execute the following command in a terminal session:

git clone https://github.com/nexB/scancode-toolkit.git

That will create an /scancode-toolkit directory in your working directory.
Now you can install the dependencies in a virtualenv:

cd scancode-toolkit
./configure --docs

Note

In case of windows, run configure --docs instead of this.

Now, this will install the following prerequisites:

	Sphinx

	sphinx_rtd_theme (the format theme used by ReadTheDocs)

	docs8 (style linter)

These requirements are already present in setup.cfg and ./configure –docs installs them.

Now you can build the HTML documents locally:

source venv/bin/activate
cd docs
make html

Assuming that your Sphinx installation was successful, Sphinx should build a local instance of the
documentation .html files:

open build/html/index.html

Note

In case this command did not work, for example on Ubuntu 18.04 you may get a message like “Couldn’t
get a file descriptor referring to the console”, try:

see build/html/index.html

You now have a local build of the AboutCode documents.

Share Document Improvements

Ensure that you have the latest files:

git pull
git status

Before commiting changes run Continious Integration Scripts locally to run tests. Refer
Continuous Integration for instructions on the same.

Follow standard git procedures to upload your new and modified files. The following commands are
examples:

git status
git add source/index.rst
git add source/how-to-scan.rst
git status
git commit -m "New how-to document that explains how to scan"
git status
git push
git status

The Scancode-Toolkit webhook with ReadTheDocs should rebuild the documentation after your
Pull Request is Merged.

Refer the Pro Git Book [https://git-scm.com/book/en/v2/] available online for Git tutorials
covering more complex topics on Branching, Merging, Rebasing etc.

Continuous Integration

The documentations are checked on every new commit through Travis-CI, so that common errors are
avoided and documentation standards are enforced. Travis-CI presently checks for these 3 aspects
of the documentation :

	Successful Builds (By using sphinx-build)

	No Broken Links (By Using link-check)

	Linting Errors (By Using Doc8)

So run these scripts at your local system before creating a Pull Request:

cd docs
./scripts/sphinx_build_link_check.sh
./scripts/doc8_style_check.sh

If you don’t have permission to run the scripts, run:

chmod u+x ./scripts/doc8_style_check.sh

Style Checks Using Doc8

How To Run Style Tests

In the project root, run the following commands:

$ cd docs
$./scripts/doc8_style_check.sh

A sample output is:

Scanning...
Validating...
docs/source/misc/licence_policy_plugin.rst:37: D002 Trailing whitespace
docs/source/misc/faq.rst:45: D003 Tabulation used for indentation
docs/source/misc/faq.rst:9: D001 Line too long
docs/source/misc/support.rst:6: D005 No newline at end of file
========
Total files scanned = 34
Total files ignored = 0
Total accumulated errors = 326
Detailed error counts:
 - CheckCarriageReturn = 0
 - CheckIndentationNoTab = 75
 - CheckMaxLineLength = 190
 - CheckNewlineEndOfFile = 13
 - CheckTrailingWhitespace = 47
 - CheckValidity = 1

Now fix the errors and run again till there isn’t any style error in the documentation.

What is Checked?

PyCQA is an Organization for code quality tools (and plugins) for the Python programming language.
Doc8 is a sub-project of the same Organization. Refer this README [https://github.com/PyCQA/doc8/blob/main/README.rst] for more details.

What is checked:

	invalid rst format - D000

	lines should not be longer than 100 characters - D001

	RST exception: line with no whitespace except in the beginning

	RST exception: lines with http or https URLs

	RST exception: literal blocks

	RST exception: rst target directives

	no trailing whitespace - D002

	no tabulation for indentation - D003

	no carriage returns (use UNIX newlines) - D004

	no newline at end of file - D005

Interspinx

ScanCode toolkit documentation uses Intersphinx [http://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html]
to link to other Sphinx Documentations, to maintain links to other Aboutcode Projects.

To link sections in the same documentation, standart reST labels are used. Refer
Cross-Referencing [https://www.sphinx-doc.org/en/master/usage/referencing.html#cross-referencing-arbitrary-locations] for more information.

For example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

Now, using Intersphinx, you can create these labels in one Sphinx Documentation and then referance
these labels from another Sphinx Documentation, hosted in different locations.

You just have to add the following in the conf.py file for your Sphinx Documentation, where you
want to add the links:

extensions = [
'sphinx.ext.intersphinx'
]

intersphinx_mapping = {'aboutcode': ('https://aboutcode.readthedocs.io/en/latest/', None)}

To show all Intersphinx links and their targets of an Intersphinx mapping file, run:

python -msphinx.ext.intersphinx https://aboutcode.readthedocs.io/en/latest/objects.inv

Warning

python -msphinx.ext.intersphinx https://aboutcode.readthedocs.io/objects.inv will give
error.

This enables you to create links to the aboutcode Documentation in your own Documentation,
where you modified the configuration file. Links can be added like this:

For more details refer :ref:`aboutcode:doc_style_guide`.

You can also not use the aboutcode label assigned to all links from aboutcode.readthedocs.io,
if you don’t have a label having the same name in your Sphinx Documentation. Example:

For more details refer :ref:`doc_style_guide`.

If you have a label in your documentation which is also present in the documentation linked by
Intersphinx, and you link to that label, it will create a link to the local label.

For more information, refer this tutorial named
Using Intersphinx [https://my-favorite-documentation-test.readthedocs.io/en/latest/using_intersphinx.html].

Style Conventions for the Documentaion

	Headings

(Refer [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections])
Normally, there are no heading levels assigned to certain characters as the structure is
determined from the succession of headings. However, this convention is used in Python’s Style
Guide for documenting which you may follow:

with overline, for parts

	with overline, for chapters

=, for sections

-, for subsections

^, for sub-subsections

“, for paragraphs

	Heading Underlines

Do not use underlines that are longer/shorter than the title headline itself. As in:

Correct :

Extra Style Checks

Incorrect :

Extra Style Checks

Note

Underlines shorter than the Title text generates Errors on sphinx-build.

	Internal Links

Using :ref: is advised over standard reStructuredText links to sections (like
`Section title`_) because it works across files, when section headings are changed, will
raise warnings if incorrect, and works for all builders that support cross-references.
However, external links are created by using the standard `Section title`_ method.

	Eliminate Redundancy

If a section/file has to be repeated somewhere else, do not write the exact same section/file
twice. Use .. include: ../README.rst instead. Here, ../ refers to the documentation
root, so file location can be used accordingly. This enables us to link documents from other
upstream folders.

	Using :ref: only when necessary

Use :ref: to create internal links only when needed, i.e. it is referenced somewhere.
Do not create references for all the sections and then only reference some of them, because
this created unnecessary references. This also generates ERROR in restructuredtext-lint.

	Spelling

You should check for spelling errors before you push changes. Aspell [http://aspell.net/]
is a GNU project Command Line tool you can use for this purpose. Download and install Aspell,
then execute aspell check <file-name> for all the files changed. Be careful about not
changing commands or other stuff as Aspell gives prompts for a lot of them. Also delete the
temporary .bak files generated. Refer the manual [http://aspell.net/man-html/] for more
information on how to use.

	Notes and Warning Snippets

Every Note and Warning sections are to be kept in rst_snippets/note_snippets/ and
rst_snippets/warning_snippets/ and then included to eliminate redundancy, as these are
frequently used in multiple files.

	Redirects

If layouts of doc pages are being changed and these could be referenced elsewhere, these should
be added in the redirects mapping in conf.py. For examples on using these see
https://documatt.gitlab.io/sphinx-reredirects/usage.html

Converting from Markdown

If you want to convert a .md file to a .rst file, this tool [https://github.com/chrissimpkins/md2rst]
does it pretty well. You’d still have to clean up and check for errors as this contains a lot of
bugs. But this is definitely better than converting everything by yourself.

This will be helpful in converting GitHub wiki’s (Markdown Files) to reStructuredtext files for
Sphinx/ReadTheDocs hosting.

Automatic Docs Generation

It’s possible to generate docs automatically from data by using a combination of:

	shell scripts: example [https://github.com/nexB/scancode-toolkit/blob/develop/docs/scripts/regen_package_docs.sh]

	python scripts: example [https://github.com/nexB/scancode-toolkit/blob/develop/src/packagedcode/regen_package_docs.py]

	jinja templates: example [https://github.com/nexB/scancode-toolkit/blob/develop/src/packagedcode/templates/available_package_parsers.rst]

And we do this currently to keep a documentation page for all the supported package formats.
See Supported package manifests and package datafiles for details.

Roadmap

This is a high level list of what we are working on and what is completed.

This is not updated regularly, see the milestones [https://github.com/nexB/scancode-toolkit/milestones]
instead for updated shorter and longer term roadmaps.

Legend

[image: white_check_mark] completed [image: clock1030] In progress [image: white_large_square] Planned, not started

Work in Progress

(see Completed features below)

Package manifest and dependency parsers

	[image: clock1030] Docker image base (as part of: https://github.com/pombredanne/conan) #651

	[image: clock1030] RubyGems base and dependencies #650 (code in https://github.com/nexB/scancode-toolkit-contrib/)

	[image: clock1030] Perl, CPAN (basic in https://github.com/nexB/scancode-toolkit-contrib/)

	[image: clock1030] Go : parsing for Godep in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Windows PE #652

	[image: white_large_square] RPM dependencies #649

	[image: white_large_square] Windows Nuget dependencies #648

	[image: white_check_mark] Bower packages #654

	[image: white_check_mark] Python dependencies #653

	[image: white_check_mark] CRAN

	[image: white_check_mark] Plain packages

	[image: white_large_square] other Java-related meta files (SBT, Ivy, Gradle, etc.)

	[image: white_large_square] Debian debs

	[image: white_large_square] other JavaScript (jspm, etc.)

	[image: white_large_square] other Linux distro packages

License Detection

	[image: white_check_mark] support and detect license expressions (code in https://github.com/nexB/license-expression)

	[image: clock1030] support and detect composite licenses

	[image: white_check_mark] support custom licenses

	[image: white_large_square] move licenses data set to external separate repository

	[image: white_check_mark] Improved unknown license detection

	[image: white_check_mark] sync with external sources (DejaCode, SPDX, etc.)

Copyrights

	[image: white_check_mark] speed up copyright detection

	[image: white_check_mark] improved detected lines range

	[image: white_check_mark] streamline grammar of copyright parser

	[image: white_check_mark] normalize holders and authors for summarizing

	[image: white_check_mark] normalize and streamline results data format

Core features

	[image: white_check_mark] pre scan filtering (ignore binaries, etc)

	[image: white_check_mark] pre/post/ouput plugins! (worked as part of the GSoC by @yadsharaf)

	[image: white_check_mark] scan plugins (e.g. plugins that run a scan to collect data)

	[image: white_check_mark] support Python 3 #295

	[image: clock1030] transparent archive extraction (as opposed to on-demand with extractcode)

	[image: white_large_square] scancode.yml configuration file for exclusions, defaults, scan
failure conditions, etc.

	[image: white_large_square] support scan pipelines and rules to organize more complex scans

	[image: white_check_mark] scan baselining, delta scan and failure conditions (such as license change,
etc) (spawned as its the DeltaCode [https://github.com/nexB/deltacode/] project)

	[image: white_large_square] dedupe and similarities to avoid re-scanning. For now only identical files
are scanned only once.

	[image: clock1030] Improved logging, tracing and error diagnostics

	[image: white_check_mark] native support for ABC Data (See AboutCode Data Structure (ABCD) [https://aboutcode.readthedocs.io/en/latest/aboutcode-data/abcd.html#aboutcode-data])

Classification, summarization and deduction

	[image: clock1030] File classification #426

	[image: white_check_mark] summarize and aggregate data #377 at the top level

Source code support (some will be spawned as their own tool)

	[image: clock1030] symbols : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] metrics : some elements in https://github.com/nexB/scancode-toolkit-contrib/

Compiled code support (will be spawned as their own tool)

	[image: clock1030] ELFs : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Java bytecode : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Windows PE : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Mach-O : parsing complete in in https://github.com/nexB/scancode-toolkit-contrib/

	[image: white_large_square] Dalvik/dex

Data exchange

	[image: white_check_mark] SPDX data conversion #338

Packaging

	[image: white_large_square] simpler installation, automated installer

	[image: white_check_mark] distro-friendly packaging

	[image: clock1030] unbundle and package as multiple libaries (commoncode, extractcode, etc)

Documentation

	[image: white_large_square] integration in a build/CI loop

	[image: white_large_square] end to end guide to analyze a codebase

	[image: white_large_square] hacking guides

	[image: white_large_square] API doc when using ScanCode as a library

CI integration

	[image: white_large_square] Plugins for CI (Jenkins, etc)

	[image: white_large_square] Integration for CI (Travis, Appveyor, Drone, etc)

Other work in progress

	[image: clock1030] ScanCode server: Separate project: https://github.com/nexB/scancode-server.
Will include Integration / webhooks for Github, Bitbucket.

	[image: clock1030] VulnerableCode: NVD and CVE lookups: Separate project:
https://github.com/nexB/vulnerablecode

	[image: white_check_mark] ScanCode Workbench: desktop app for scan review: Separate project:
https://github.com/nexB/scancode-workbench

	[image: white_large_square] DependentCode: dynamic dependencies resolutions: Separate project:
https://github.com/nexB/dependentcode

Package mining and matching

(Note that this will be a separate project)
Some code is in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] exact matching

	[image: clock1030] attribute-based matching

	[image: clock1030] fuzzy matching

	[image: white_large_square] peer-reviewed meta packages repo

	[image: white_large_square] basic mining of package repositories

Other

	[image: white_large_square] Crypto code detection

Completed features

Core scans

	[image: white_check_mark] exact license detection

	[image: white_check_mark] approximate license detection

	[image: white_check_mark] copyright detection

	[image: white_check_mark] file information (size, type, etc.)

	[image: white_check_mark] URLs, emails, authors

Outputs and UI

	[image: white_check_mark] JSON compact and pretty

	[image: white_check_mark] plain HTML tables, also usable in a spreadsheet

	[image: white_check_mark] fancy HTML ‘app’ with a file tree navigation, and scan results filtering,
search and sorting

	[image: white_check_mark] simple scan summary

	[image: white_check_mark] SPDX output

Package and dependencies

	[image: white_check_mark] common model for package data

	[image: white_check_mark] basic support for common package format

	[image: white_check_mark] RPM package base

	[image: white_check_mark] NuGet package base

	[image: white_check_mark] Python package base

	[image: white_check_mark] PHP Composer package support with dependencies

	[image: white_check_mark] Java Maven POM package support with dependencies

	[image: white_check_mark] npm package support with dependencies

Speed!

	[image: white_check_mark] accelerate license detection indexing and scanning; include caching

	[image: white_check_mark] scan using multiple processes to speed up overall scan

	[image: white_check_mark] cache per-file scan to disk and stream final results

Other

	[image: white_check_mark] archive extraction with extractcode

	[image: white_check_mark] conversion of scan results to CSV

	[image: white_check_mark] improved error handling, verbose and diagnostic output

Google Summer of Code 2017 - Final report

Project: Plugin architecture for ScanCode

Yash D. Saraf yashdsaraf@gmail.com

This project’s purpose was to create a decoupled plugin architecture for
ScanCode [https://github.com/nexB/scancode-toolkit] such that it can handle plugins at different
stages of a scan and can be coupled at runtime. These stages were,

1. Format [https://github.com/nexB/scancode-toolkit/issues/639] :

In this stage, the plugins are supposed to run after the scanning is done and post-scan
plugins are called. These plugins could be used for:

	converting the scanned output to the given format (say csv, json, etc.)

HOWTO

Here, a plugin needs to add an entry in the scancode_output_writers entry point in the following
format : '<format> = <module>:<function>'.

	<format> is the format name which will be used as the command line option name
(e.g csv or json).

	<module> is a python module which implements the output hook specification.

	<function> is the function to which the scan output will be passed if this plugin is called.

The <format> name will be automatically added to the --format command line option and
(if called) the scanned data will be passed to the plugin.

2. Post-scan [https://github.com/nexB/scancode-toolkit/issues/704] :

In this stage, the plugins are supposed to run after the scanning is done. Some uses for these
plugins were:

	summarization of scan outputs

e.g A post-scan plugin for marking is_source to true for directories with ~90% of source
files.

	simplification of scan outputs

e.g The --only-findings option to return files or directories with findings for the
requested scans. Files and directories without findings are omitted (not considering basic file
information as findings)).

This option already existed, I just ported it to a post-scan plugin.

HOWTO

Here, a plugin needs to add an entry in the scancode_post_scan entry point in the following
format '<name> = <module>:<function>'

	<name> is the command line option name (e.g only-findings).

	<module> is a python module which implements the post_scan hook specification.

	<function> is the function to which the scanned files will be passed if this plugin is called

The command line option for this plugin will be automatically created using the <function> ‘s
doctring as its help text and (if called) the scanned files will be passed to the plugin.

3. Pre-scan [https://github.com/nexB/scancode-toolkit/issues/719] :

In this stage, the plugins are supposed to run before the scan starts. So the potential uses
for these types of plugins were to:

	ignore files based on a given pattern (glob)

	ignore files based on their info i.e size, type etc.

	extract archives before scanning

HOWTO

Here, a plugin needs to add an entry in the scancode_pre_scan entry point in the following
format : '<name> = <module>:<class>'

	<name> is the command line option name (e.g ignore).

	<module> is a python module which implements the pre_scan hook specification.

	<class> is the class which is instantiated and its appropriate method is invoked if this
plugin is called. This needs to extend the plugincode.pre_scan.PreScanPlugin class.

The command line option for this plugin will be automatically created using the <class> ‘s
doctring as its help text. Since there isn’t a single spot where pre-scan plugins can be
plugged in, more methods to PreScanPlugin class can be added which can represent different
hooks, say to add or delete a scan there might be a method called process_scan.

If a plugin’s option is passed by the user, then the <class> is instantiated with the user
input and its appropriate aforementioned methods are called.

4. Scan (proper):

In this stage, the plugins are supposed to run before the scan starts and after the
pre-scan plugins are called. These plugins would have been used for

	adding or deleting scans

	adding dependency scans (whose data could be used in other scans)

No development has been done for this stage, but it will be quite similar to pre-scan.

5. Other work:

Group cli options in cli help [https://github.com/nexB/scancode-toolkit/issues/709]

Here, the goal was to add command line options to pre-defined groups such that they are displayed
in their respective groups when scancode -h or scancode --help is called. This helped to
better visually represent the command line options and determine more easily what context they
belong to.

Add a Resource class to hold all scanned info [https://github.com/nexB/scancode-toolkit/issues/738]
* Ongoing *

Here, the goal was to create a Resource class, such that it holds all the scanned data for a
resource (i.e a file or a directory). This class would go on to eventually encapsulate the caching
logic entirely. For now, it just holds the info and path of a resource.

6. What’s left?

	Pre-scan plugin for archive extractions

	Scan (proper) plugins

	More complex post-scan plugins

	Support plugins written in languages other than python

Additionally, all my commits can be found here [https://github.com/nexB/scancode-toolkit/commits/develop?author=yashdsaraf].

Google Summer of Code 2019 - Final report

Project: scancode-toolkit to Python 3

Owner: Abhishek Kumar [https://github.com/Abhishek-Dev09]

Mentor: Philippe Ombredanne [https://github.com/pombredanne]

Overview

Problem: Since Python 2.7 will retire in few months and will not be maintained any longer.

Solution: Scancode [https://github.com/nexB/scancode-toolkit/] needs to be ported to
python 3 and all test suites must pass on both version of Python. The main difference that
makes Python 3 better than Python 2.x is that the support for unicode is greatly improved in
Python 3. This will also be useful for scancode as scancode has users in more than 100 languages
and it’s easy to translate strings from unicode to other languages.

Objective: To make scancode-toolkit installable on on Python 3.6 and higher, as presently it
installs with Python 2.7 only.

Implementation

	It was started in development mode(editable mode) and then it was moved to work in virtual
environments.

	I have worked module by module according to the order of hierarchy of modules. For example :All
module is dependent on commoncode, so it must be ported first. In this way we have created the
Porting order:

	commoncode

	plugincode

	typecode

	extractcode

	textcode

	scancode basics (some tests are integration tests and will have to wait to be ported)

	formattedcode, starting with JSON (some tests are integration tests and will have to wait
to be ported)

	cluecode

	licensedcode

	packagedcode (depends on licensecode)

	summarycode

	fixup the remaining bits and tests

After porting each module, I have marked these modules as ported scanpy3 with help of
conffest plugin (created by @pombredanne [https://github.com/pombredanne]). Conffest
plugin is heart of this project. Without this, it was very difficult to do. Dependencies was fixed
at the time of porting the module where it was used.

Challenging part of Project

It is very difficult to deal with paths on different operating systems.The issue is around
macOS/Windows/Linux. The first two OS handle unicode paths comfortably on Python 2 and 3 but not
completely on macOS Mojave because its filesystem encoding is APFS. Linux paths are bytes and
os.listdir is broken on Python 2. As a result you can only sanely handle Linux paths as bytes
on Python 2. But on Python 3 path seems to be corrected as unicode on Linux.

For more details visit here :

	https://vstinner.github.io/painful-history-python-filesystem-encoding.html

	jaraco/path.py#130 [https://github.com/jaraco/path.py/issues/130]

We came with various Solution:

	To use pathlib which generally handle paths correctly across platforms. And for backports we use
pathlib 2. But this solution also fails because pathlib 2 does not work as expected wrt unicode
vs bytes. And os.listdir also doesn’t work properly.

	To use path.py [https://pypi.org/project/path.py/] which handles the paths across all the
platforms even on macOS Mojave .

	Use bytes on linux and python 3 and unicode everywhere.

We choose the third solution because it is most fundamental and simple and easy to use.

Project was tracked in this ticket nexB/scancode-toolkit#295 [https://github.com/nexB/scancode-toolkit/issues/295]

Project link : Port Scancode to Python 3 [https://summerofcode.withgoogle.com/organizations/6118953540124672/]

My contribution : List of Commits [https://github.com/nexB/scancode-toolkit/commits?author=Abhishek-Dev09]

Note : Please give your feedback here [https://github.com/nexB/scancode-toolkit/issues/295]

Outcome

Now we have liftoff on Python 3 . We are able to run basic scans without errors on develop branch.
You check it by running scancode -clipeu samples/ --json-pp - -n4 .

At last I would like to thanks my Mentor @pombredanne aka
Philippe Ombredanne [https://github.com/pombredanne] . He has helped lot in completing this
project. He is very supportive and responsive. I have learned a lot from him. By his encouragement
and motivation, I am very improving day by day, building and developing my skills. I have completed
all the tasks that were in the scope of this GSoC project.

Google Summer of Code 2021 Final report

Organisation - AboutCode [https://www.aboutcode.org/]

Akanksha Garg <akanksha.garg2k@gmail.com>

GITHUB [https://github.com/akugarg]

Project: Detect Unknown Licenses and Indirect License References in Scancode

ScanCode-toolkit [https://github.com/nexB/scancode-toolkit]

Project Link [https://summerofcode.withgoogle.com/archive/2021/projects/6229596998991872]

Proposal [https://docs.google.com/document/d/1Dp0Hgk38RIMwITTiS-kqfikpkHRi2rjtkotA9CLw8j0/edit?usp=sharing]

Description

The main motive of this project was to improve license detection of unknown licenses
and follow references to indirect license references in Scancode-TK

Improvement in the License Data Model Definition

Unknown Licenses are the ones which are matched to a license rule tagged with ‘unknown’ license
key. Since these are some of the ‘special’ licenses , reporting them with special attributes
will provide more clarification. Now unknown licenses are tagged with a new flag “is_unknown”
to identify them beyond just the naming convention of having “unknown” as part of their name.

Rules that match at least one unknown license have a flag “has_unknown” set
in the returned match results.

nexB/scancode-toolkit#2548 [https://github.com/nexB/scancode-toolkit/pull/2548]

Reporting known and Unknown licenses separately

We considered having a separate section for of scan results to report ‘unknown licenses’
separately and not mixed with main license detection results. But after implementing
a separate section for unknown ones ,it doesn’t seem to be good idea to have currently.

nexB/scancode-toolkit#2578 [https://github.com/nexB/scancode-toolkit/pull/2578]

Follow License References to another file

Some license references such as “see license in file LICENSE.txt” e.g. mentions to look
for license details in another file are reported as unknown license references and
we could instead follow the referenced file to find what was detected there. The approach
was to use already contained attribute refrenced_filenames in license RULE data files.
Since this was a process_codebase step in scan plugin , it was needed that our API function
should return refrenced_filenames to keep track of these files corresponding to licenses
detected. This was tracked in -

nexB/scancode-toolkit#2632 [https://github.com/nexB/scancode-toolkit/pull/2632]

The `process_codebase` step is tracked in -

nexB/scancode-toolkit#2616 [https://github.com/nexB/scancode-toolkit/pull/2616]

Improve license detection of Unknown Licenses

The approach was to use index of n-grams for detecting unknowns besides having our actual
detection of “unknown” license rules. Firstly matches were filtered after running our normal
procedure of license detection and the remaining spans are run through a automaton index
containing n-grams from all regular license texts and rules. This is tracked in -

nexB/scancode-toolkit#2592 [https://github.com/nexB/scancode-toolkit/pull/2592]

Addition of some new Licenses

There were some licenses that were not present in Scancode-toolkit as for now.
They have been added now.

nexB/scancode-toolkit#2625 [https://github.com/nexB/scancode-toolkit/pull/2625]

Pre-GSoC

Contributions

	nexB/scancode-toolkit#2423 [https://github.com/nexB/scancode-toolkit/pull/2423]

	nexB/scancode-toolkit#2473 [https://github.com/nexB/scancode-toolkit/pull/2473]

	nexB/scancode-toolkit#2464 [https://github.com/nexB/scancode-toolkit/pull/2464]

	nexB/scancode-toolkit#2381 [https://github.com/nexB/scancode-toolkit/pull/2381]

I’ve had a wonderful summer during these 10 weeks journey and have learned plenty of things.
I am thankful to Google and Aboutcode for giving me this opportunity to work with such an amazing
community. I am fortunate to have mentors Philippe Ombredanne [https://github.com/pombredanne]
and Ayan Sinha Mahapatra [https://github.com/AyanSinhaMahapatra] who helped me a lot throughout
my GSoC project and provided constant support.

Plugins

	Plugin Architecture
	Abstract:

	Description:

	Existing solutions:

	License Policy Plugin
	Policy File Specification

	Using the Plugin

	Example Output

	Plugin Tutorials

	CPP Includes Plugin
	Using the Plugin

	Example Output

	LKMClue Plugin
	Using the Plugin

	Example Output

	Dwarf Plugin
	Specification

	Using the Plugin

	Example Output

Plugin Architecture

Abstract:

The purpose of plugins is to create a decoupled architecture such that ScanCode can
support extensibility at different stages of a scan. These stages are:

	Pre-scan: Before starting the scan proper, such as plugins to handle
extraction of different archive types or instructions on how to handle certain
types of files, or to collect filetypes. These plugins process a whole codebase
at once.

	Scan proper: plugins to scan a file e.g. collect data and evidece from the
files. These plugins process one file at a teim and can do a whole codebase
pass once all files are scanned.

	Post-scan: After the scan, e.g plugins for summarization and other aggregated
operation once all scans are completed. These plugins process a whole codebase
at once.

	Output and output filter: plugins for output creation and filtering such as
formatting or converting output to other formats (such as json, spdx, csv,
yaml). These plugins process a whole codebase at once.

Description:

This project aims at making scancode a “pluggable” system, where new
functionalities can be added to scancode at runtime as “plugins”. These plugins
can be hooked into scancode using some predefined hooks. I would consider pluggy
as the way to go for a plugin management system.

Why pluggy?

Pluggy is well documented and maintained regularly, and has proved its worth in
projects such as pytest. Pluggy relies on hook specifications and hook
implementations (callbacks) instead of the conventional subclassing approach
which may encourage tight-coupling in the overlying framework. Basically a hook
specification contains method signatures (no code), these are defined by the
application. A hook implementation contains definitions for methods declared in
the corresponding hook specification implemented by a plugin.

As mentioned in the abstract, the plugin architecture will have 3 hook
specifications (can be increased if required)

1. Pre - scan hook

	Structure -

prescan_hookspec = HookspecMarker('prescan')

@prescan_hookspec
def extract_archive(args):

Here the path of the archive to be extracted will be passed as an argument to the extract_archive
function which will be called before scan, at the time of extraction. This will process the archive
type and extract the contents accordingly. This functionality can be further extended by calling
this function if any archive is found inside the scanning tree.

2. Scan proper hook

	Structure

scanproper_hookspec = HookspecMarker('scanproper')

@scanproper_hookspec
def add_cmdline_option(args):

This function will be called before starting the scan, without any arguments, it will return a dict
containing the click extension details and possibly some help text. If this option is called by the
user then the call will be rerouted to the callback defined by the click extension. For instance
say a plugin implements functionality to add regex as a valid ignore pattern, then this function
will return a dict as:

{
 'name': '--ignore-regex',
 'options' : {
 'default': None,
 'multiple': True,
 'metavar': <pattern>
 },
 'help': 'Ignore files matching regex <pattern>'
 'call_after': 'is_ignored'
}

According to the above dict, if the option –ignore-regex is supplied, this function will be called
after the is_ignored function and the data returned by the is_ignored function will be supplied to
this function as its argument(s). So if the program flow was:

scancode() ⇔ scan() ⇔ resource_paths() ⇔ is_ignored()

It will now be edited to

scancode() ⇔ scan() ⇔ resource_paths() ⇔ is_ignored() ⇔ add_cmdline_option()

Options such as call_after, call_before, call_first, call_last can be defined to determine
when the function is to be executed.

@scanproper_hookspec
def dependency_scan(args):

This function will be called before starting the scan without any arguments, it will return a
list of file types or attributes which if encountered in the scanned tree, will call this function
with the path to the file as an argument. This function can do some extra processing on those files
and return the data to be processed as a dependency for the normal scanning process.
E.g. It can return a list such as:

['debian/copyright']

Whenever a file matches this pattern, this function will be called and the data returned will be
supplied to the main scancode function.

3. Post - scan hook

	Structure -

postscan_hookspec = HookspecMarker('postscan')

@postscan_hookspec
def format_output(args):

This function will be called after a scan is finished. It will be supplied with path to the ABC
data generated from the scan, path to the root of the scanned code and a path where the output is
expected to be stored. The function will store the processed data in the output path supplied.
This can be used to convert output to other formats such as CSV, SPDX, JSON, etc.

@postscan_hookspec
def summarize_output(args):

This function will be called after a scan is finished. It will be supplied the data to be reported
to the user as well as a path to the root of the scanned node. The data returned can then be
reported to the user. This can be used to summarize output, maybe encapsulate the data to be
reported or omit similar file metadata or even classify files such as tests, code proper, licenses,
readme, configs, build scripts etc.

	Identifying or configuring plugins

For python plugins, pluggy supports loading modules from setuptools entrypoints,
E.g.

entry_points = {
 'scancode_plugins': [
 'name_of_plugin = ignore_regex',
]
}

This plugin can be loaded using the PluginManager class’s
load_setuptools_entrypoints(‘scancode_plugins’) method which will return a list of loaded plugins.

For non python plugins, all such plugins will be stored in a common directory and each of these
plugins will have a manifest configuration in YAML format. This directory will be scanned at
startup for plugins. After parsing the config file of a plugin, the data will be supplied to the
plugin manager as if it were supplied using setuptools entrypoints.

In case of non python plugins, the plugin executables will be spawned in their own processes and
according to their config data, they will be passed arguments and would return data as necessary.
In addition to this, the desired hook function can be called from a non python plugin using certain
arguments, which again can be mapped in the config file.

Sample config file for a ignore_regex plugin calling scanproper hook would be:

name: ignore_regex
hook: scanproper
hookfunctions:
 add_cmdline_option: '-aco'
 dependency_scan: '-dc'
data:
 add_cmdline_option':
 - name: '--ignore-regex'
 - options:
 - default: None
 - multiple: True
 - metavar: <pattern>
 - help: 'Ignore files matching regex <pattern>'
 - call_after: 'is_ignored'

Existing solutions:

An alternate solution to a “pluggable” system would be the more conventional approach of adding
functionalities directly to the core codebase, which removes the abstraction layer provided by
a plugin management and hook calling system.

License Policy Plugin

This plugin allows the user to apply policy details to a scancode scan, depending on which
licenses are detected in a particular file. If a license specified in the Policy file is
detected by scancode, this plugin will apply that policy information to the Resource as a new
attribute: license_policy.

Policy File Specification

The Policy file is a YAML (.yml) document with the following structure:

license_policies:
- license_key: mit
 label: Approved License
 color_code: '#00800'
 icon: icon-ok-circle
- license_key: agpl-3.0
 label: Approved License
 color_code: '#008000'
 icon: icon-ok-circle
- license_key: broadcom-commercial
 label: Restricted License
 color_code: '#FFcc33'
 icon: icon-warning-sign

The only required key is license_key, which represents the ScanCode license key to match
against the detected licenses in the scan results.

In the above example, a descriptive label is added along with a color code and CSS id name
for potential visual display.

Using the Plugin

To apply License Policies during a ScanCode scan, specify the --license-policy option.

For example, use the following command to run a File Info and License scan on
/path/to/codebase/, using a License Policy file found at ~/path/to/policy-file.yml:

$ scancode -clipeu /path/to/codebase/ --license-policy ~/path/to/policy-file.yml --json-pp
 ~/path/to/scan-output.json

Example Output

Here is an example of the ScanCode output after running --license-policy:

{
 "path": "samples/zlib/deflate.c",
 "type": "file",
 "detected_license_expression": "zlib",
 "detected_license_expression_spdx": "Zlib",
 "license_detections": [
 {
 "license-expression": "zlib",
 ...
 ...
 ...
 }
],
 "license_policy": {
 "license_key": "zlib",
 "label": "Approved License",
 "color_code": "#00800",
 "icon": "icon-ok-circle"
 },
 "scan_errors": []
 }

Plugin Tutorials

	Add A Post-Scan Plugin

CPP Includes Plugin

This plugin allows users to collect the #includes statements in C/C++ files.

Using the Plugin

User needs to use the --cpp-includes option.

The following command will collect the #includes statements from C/C++ files.:

$ scancode --cpp-includes /path/to/codebase/ --json-pp ~/path/to/scan-output.json

Example Output

Here is an sample output:

{
 "path": "zlib_deflate/deflate.c",
 "type": "file",
 "cpp_includes": [
 "<linux/module.h",
 "<linux/zutil.h",
 "\"defutil.h"
],
 "scan_errors": []
},
{
 "path": "zlib_deflate/deflate_syms.c",
 "type": "file",
 "cpp_includes": [
 "<linux/module.h",
 "<linux/init.h",
 "<linux/zlib.h"
],
 "scan_errors": []
}

LKMClue Plugin

This plugin allows users to collect LKM module clues and type indicating a
possible Linux Kernel Module.

Using the Plugin

User needs to use the --lkmclue option.

The following command will collect the LKM module clues from the input location:

$ scancode --lkmclue /path/to/codebase/ --json-pp ~/path/to/scan-output.json

Example Output

Here is an sample output:

{
 "path": "zlib_deflate/deflate.c",
 "type": "file",
 "lkm_clue": {
 "lkm-header-include": [
 "include <linux/module.h>"
]
 },
 "scan_errors": []
},
{
 "path": "zlib_deflate/deflate_syms.c",
 "type": "file",
 "lkm_clue": {
 "lkm-header-include": [
 "include <linux/module.h>"
],
 "lkm-license": [
 "GPL"
]
 },
 "scan_errors": []
}

Dwarf Plugin

This plugin allows users to collect source code path/name from compilation units found in
ELF DWARFs.

Specification

This plugin will only work with non-stripped ELFs with debug symbols.

Using the Plugin

User needs to use the --dwarf option.

The following command will collect all the dwarf references found in non-stripped ELFs:

$ scancode --dwarf /path/to/codebase/ --json-pp ~/path/to/scan-output.json

Example Output

Here is an sample output:

{
 "path": "project/stripped.ELF",
 "type": "file",
 "dwarf_source_path": [],
 "scan_errors": []
},
{
 "path": "project/non-stripped.ELF",
 "type": "file",
 "dwarf_source_path": ['/tmp/test.c],
 "scan_errors": []
}

Miscellaneous

	FAQ
	Why ScanCode?

	How is ScanCode different from Debian licensecheck?

	How can I integrate ScanCode in my application?

	Can I install ScanCode in a Unicode path?

	The line numbers for a copyright found in a binary are weird. What do they mean?

	Support
	Documentation

	Issue Tracker

	Discussions

	Join the conversation

	Runtime Performance Reports

	Versioning approach

FAQ

Why ScanCode?

We could not find an existing tool (open source or commercial) meeting our needs:

	usable from the command line or as library

	running on Linux, Mac and Windows

	written in a higher level language such as Python

	easy to extend and evolve

	accurately detecting most licenses and copyrights

How is ScanCode different from Debian licensecheck?

At a high level, ScanCode detects more licenses and copyrights than licensecheck
does, reporting more details about the matches. It is likely slower.

In more details: ScanCode is a Python app using a data-driven approach (as
opposed to carefully crafted regex like licensecheck uses):

	for license scan, the detection is based on a (large) number of license full
texts (~2100) and license notices, mentions and variants (~32,000) and is data-
driven as opposed to regex-driven. It detects and reports exactly where
license text is found in a file. Just throw in more license texts to improve
the detection.

	for copyright scan, the approach is natural language parsing grammar; it has a
few thousand tests.

	licenses and copyrights are detected in texts and binaries

	licenses and copyrights are also detected in structured package manifests

Licensecheck (available here for reference:
https://metacpan.org/pod/App::Licensecheck) is a Perl script using hand-
crafted regex patterns to find typical copyright statements and about 50 common
licenses. There are about 50 license detection tests.

A quick test (in July 2015, before a major refactoring, but for this may still
be still valid) shows several things that are not detected by licensecheck that
are detected by ScanCode.

How can I integrate ScanCode in my application?

More specifically, does this tool provide an API which can be used by us for the
integration with my system to trigger the license check and to use the result?

In terms of API, there are two stable entry points:

#. The JSON output when you use it as a command line tool from any language or
when you call the scancode.cli.scancode function from a Python script.

#. Otherwise the scancode.cli.api module provides a simple function if you are
only interested in calling a certain service on a given file (such as license
detection or copyright detection)

Can I install ScanCode in a Unicode path?

Yes and this is fully supported and tested. See
https://github.com/nexB/scancode-toolkit/issues/867
for a previous bug that was preventing this.

There was a bug in virtualenv https://github.com/pypa/virtualenv/issues/457 that
is now fixed and has been extensively tested for ScanCode.

The line numbers for a copyright found in a binary are weird. What do they mean?

When scanning binaries, the line numbers are just a relative indication of where
a detection was found: there is no such thing as lines in a binary. The numbers
reported are based on the strings extracted from the binaries, typically broken
as new lines with each NULL character.

Support

Documentation

The ScanCode toolkit documentation lives at https://scancode-toolkit.readthedocs.io/.

Issue Tracker

Post issues you are having and bugs as GitHub tickets [https://github.com/nexB/scancode-toolkit/issues]

Discussions

If you want to ask questions or anything else that you think are not bugs/new
features, open a discussion [https://github.com/nexB/scancode-toolkit/discussions]

Join the conversation

Join our general chatroom [https://matrix.to/#/#aboutcode-org_discuss:gitter.im] to chat
with aboutcode community members, and if you want to talk to users and developers of
ScanCode Toolkit, use scancode room [https://matrix.to/#/#aboutcode-org_scancode:gitter.im]

Runtime Performance Reports

These are reports of runtimes for real life scans:

2015-09-03 by @rrjohnston

	On Ubuntu 12.04 x86_64 Python 2.7.3 and ScanCode Version 1.3.1

	Specs: 40 threads (2 processors, 10 cores each, with hyperthreading) 3.1 GHz 128GB RAM 8TB
controller RAID5

	scanned 195676 files in about 16.7 hours or about 3.25 file per second
(using defaults licenses and copyrights)

	notes: this version of ScanCode runs on a single thread so it does not make good use of
extra processing power.

Versioning approach

ScanCode is composed of code and data (mostly license data used for license
detection). In the past, we have tried using calver for code versioning to also
convey that the data contained in ScanCode was updated but it proved to be not
as clear and as effective as planned so we are switching back to semver which is
simpler and overall more useful for users. We also want to provide hints about
JSON output data format changes.

Therefore, this is our versioning approach starting with version 30.0.0:

	ScanCode releases are versioned using semver as documented at
https://semver.org using major.minor.patch versioning.

	Significant changes to the data (license or copyright detection) is considered
a major version change even if there are no code changes. The rationale is
that in our case the data has the same impact as the code. Using outdated data
is like using old code and means that several licenses may not be detected
correctly. Any data change triggers at least a minor version change.

	We will signal separately to users with warnings messages when ScanCode needs
to be upgraded because its data and/or code are out of date.

In addition to the main code version, we also maintain a secondary output data
format version using also semver with two segments. The versioning approach is
adapted for data this way:

	The first segment –the major version– is incremented when data attributes
that are removed, renamed, changed or moved (but not reordered) in the JSON
output. Reordering the attributes of a JSON object is not considered as a
change and does not trigger a version change.

	The second segment –the minor version– of the output format is incremented
for an addition of attributes to the JSON output.

	We store the output format version string in the JSON output object as the
first attribute and display that also in the help.

	This output format versioning applies only to the JSON, pretty-printed JSON,
YAML and JSON lines formats. It does not apply to CSV and any other formats.
For these other formats there is no versioning and guaranteed format stability
(or there may be some other rationale and convention for versioning like for
SPDX).

	The output format version is incremented by when a new ScanCode tagged release
is published

	We document in the CHANGELOG the output format changes in any new format version.

	For any format version changes, we will provide a documentation on the format
and its updates using JSON examples and a comprehensive and updated data
dictionary. See https://github.com/nexB/scancode-toolkit/issues/2008 for details.

Reference Docs

	Overview
	How does ScanCode detect licenses?

	License Detection Updates
	The Problem:

	What is a LicenseDetection?

	Chnagelog Summary

	Change in License Data format: Resource

	Change in License Data format: Package

	Codebase level Unique License Detection

	LicenseMatch Result Data

	Only reference License related data

	Supported package manifests and package datafiles

Overview

How does ScanCode detect licenses?

For license detection, ScanCode uses a (large) number of license texts and license detection
‘rules’ that are compiled in a search index. When scanning, the text of the target file is
extracted and used to query the license search index and find license matches.

For copyright detection, ScanCode uses a grammar that defines the most common and less common
forms of copyright statements. When scanning, the target file text is extracted and ‘parsed’
with this grammar to extract copyright statements.

ScanCode-Toolkit performs the scan on a codebase in the following steps :

	Collect an inventory of the code files and classify the code using file types,

	Extract files from any archive using a general purpose extractor

	Extract texts from binary files if needed

	Use an extensible rules engine to detect open source license text and notices

	Use a specialized parser to capture copyright statements

	Identify packaged code and collect metadata from packages

	Report the results in the formats of your choice (JSON, CSV, etc.) for integration
with other tools

Scan results are provided in various formats:

	a JSON file simple or pretty-printed,

	SPDX tag value or XML, RDF formats,

	CSV,

	a simple unformatted HTML file that can be opened in browser or as a spreadsheet.

For each scanned file, the result contains:

	its location in the codebase,

	the detected licenses and copyright statements,

	the start and end line numbers identifying where the license or copyright was found in the
scanned file, and

	reference information for the detected license.

For archive extraction, ScanCode uses a combination of Python modules, 7zip and libarchive/bsdtar
to detect archive types and extract these recursively.

Several other utility modules are used such as libmagic for file and mime type detection.

License Detection Updates

References:

	Issue [https://github.com/nexB/scancode-toolkit/issues/2878]

	Pull Request [https://github.com/nexB/scancode-toolkit/pull/2961]

	A presentation on this [https://github.com/nexB/scancode-toolkit/issues/2878#issuecomment-1079639973]

The Problem:

The goal was to reduce false-positives in scancode license detection results, especially
unknown-license-reference detections and approximate detections reporting best-guess
license_expressions. To tackle this the following solution elements were discussed and
implemented:

	Reporting the primary, declared license in a scan summary record

	tagging mandatory portions in rules #2773 [https://github.com/nexB/scancode-toolkit/pull/2773]

	Adding license detections by combine multiple license matches #2961 [https://github.com/nexB/scancode-toolkit/pull/2961]

	Integrating the existing scancode-analyzer tool into SCTK to combine multiple matches
based on statistics and heuristics #2961 [https://github.com/nexB/scancode-toolkit/pull/2961]

	Reporting license clues when the matched license rule data is not sufficient to
create a LicenseDetection #2961 [https://github.com/nexB/scancode-toolkit/pull/2961]

	web app for efficient scan and review of a single license to ease
reporting license detection issues nexB/scancode.io#450 [https://github.com/nexB/scancode.io/pull/450]

	also apply LicenseDetection to package license detections #2961 [https://github.com/nexB/scancode-toolkit/pull/2961]

	rename resource and package license fields #2961 [https://github.com/nexB/scancode-toolkit/pull/2961]

Some other elements are still WIP, see issue #3300 [https://github.com/nexB/scancode-toolkit/issues/3300] for more details on this.

What is a LicenseDetection?

A detection which can have one or multiple LicenseMatch in them,
and creates a License Expression that we finally report.

Properties:

	A file can have multiple LicenseDetections (separated by non-legalese lines)

	This can be from a file directly or a package.

	We should be mostly certain of a proper license detection to report a
LicenseDetection, i.e. we should have ideally gotten rid of false
positives and wrong license matches, or improved them.

	One LicenseDetection can have matches from different files, in case of local license
references.

	We don’t remove any detection matches, but we add more matches only to rectify and
correct the license_expression.

Also there are two levels of reporting license detections:

	File/package level License Detections

	Codebase level unique License Detections (summarized from the file/package level detections)

Examples

A License Intro example:

Consider the following text:

/***
* Copyright (c) 2019 Red Hat, Inc.
*
* This program and the accompanying materials are made
* available under the terms of the Eclipse Public License 2.0
* which is available at https://www.eclipse.org/legal/epl-2.0/
*
* SPDX-License-Identifier: EPL-2.0
**/

The text:

"This program and the accompanying materials are made\n* available under the terms of the"

is detected as unknown-license-reference with is_license_intro as True,
and has several epl-2.0 detections after that.

This can be considered as a single License Detection with its detected license-expression as
epl-2.0. The matches of this license detection would also have the matches with the
unknown-license-reference, but they will not be present in the final license_expression.

A License Reference example:

Consider the two following files:

file.py:

This is free software. See COPYING for details.

COPYING:

license: apache 2.0

Here there will be a unknown-license-reference detected in file.py and this
actually references the license detected in COPYING which is apache-2.0.

This can be considered a single LicenseDetection with both the license matches from both
files, and a concluded license_expression apache-2.0 instead of the
unknown-license-reference.

Chnagelog Summary

	There is a new license_detections codebase level attribute with all the
unique license detections in the whole scan, both in resources and packages.

	The data structure of the JSON output has changed for licenses at resource
level, also with new attribute names, licenses -> license_detections
and license_expressions -> detected_license_expression also with a
SPDX version of the same. As license detection attributes we have:
license_expression, identifier and matches. We also have a
detection_log (present optionally if the --license-diagnostics
option is enabled).

	There are license_detections now reported at packages, and the data
structure of license attributes in package_data and the codebase level
packages has been also updated: license_expression ->
declared_license_expression, also with it’s SPDX version,
declared_license -> extracted_license_statement, and also secondary
license detections data in: other_license_expression and
other_license_detections.

	Instead of reporting one match for each license key of a matched
license expression, we now report one single match for each matched
license expression, avoiding data duplication. Inside each match, we also
list each match and matched rule attributes directly to avoiding nesting.

	License and Rule reference data is not reported at match level in license
detections and instead is reported at codebase-level with a new CLI option
--license-references as new attributes: license_references and
license_rule_references that list unique detected license and
license rules with their details.

Change in License Data format: Resource

The data structure of the JSON output has changed for licenses at file level:

	The licenses attribute is deleted.

	A new license_detections attribute contains license detections in that file.
This object has three attributes: license_expression, detection_log
and matches. matches is a list of license matches and is roughly
the same as licenses in the previous version with additional structure
changes detailed below.

	A new attribute license_clues contains license matches with the
same data structure as the matches attribute in license_detections.
This contains license matches that are mere clues and were not considered
to be a proper conclusive license detection.

	The license_expressions list of license expressions is deleted and
replaced by a detected_license_expression single expression.
Similarly spdx_license_expressions was removed and replaced by
detected_license_expression_spdx.

See the before/after results for a file to compare the changes.

Before:

{
 "licenses": [
 {
 "key": "apache-2.0",
 "score": 100.0,
 "name": "Apache License 2.0",
 "short_name": "Apache 2.0",
 "category": "Permissive",
 "is_exception": false,
 "is_unknown": false,
 "owner": "Apache Software Foundation",
 "homepage_url": "http://www.apache.org/licenses/",
 "text_url": "http://www.apache.org/licenses/LICENSE-2.0",
 "reference_url": "https://scancode-licensedb.aboutcode.org/apache-2.0",
 "scancode_text_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/apache-2.0.LICENSE",
 "scancode_data_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/apache-2.0.yml",
 "spdx_license_key": "Apache-2.0",
 "spdx_url": "https://spdx.org/licenses/Apache-2.0",
 "start_line": 1,
 "end_line": 1,
 "matched_rule": {
 "identifier": "apache-2.0_65.RULE",
 "license_expression": "apache-2.0",
 "licenses": [
 "apache-2.0"
],
 "referenced_filenames": [],
 "is_license_text": false,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": true,
 "is_license_intro": false,
 "has_unknown": false,
 "matcher": "1-hash",
 "rule_length": 4,
 "matched_length": 4,
 "match_coverage": 100.0,
 "rule_relevance": 100,
 "is_builtin": true
 },
 "matched_text": "License: Apache-2.0"
 }
],
 "license_expressions": [
 "apache-2.0"
]
}

After:

"detected_license_expression": "apache-2.0",
"detected_license_expression_spdx": "Apache-2.0",
"license_detections": [
 {
 "license_expression": "apache-2.0",
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 4,
 "match_coverage": 100.0,
 "matcher": "1-hash",
 "license_expression": "apache-2.0",
 "rule_identifier": "apache-2.0_65.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/apache-2.0_65.RULE",
 "matched_text": "license: apache 2.0"
 }
],
 "detection_log": [],
 "identifier": "apache_2_0-ec759ae0-ea5a-f138-793e-388520e080c0"
 }
],
"license_clues": [],

Change in License Data format: Package

License data attributes has also changed in packages:

Before:

{
 "type": "cocoapods",
 "namespace": null,
 "name": "LoadingShimmer",
 "version": "1.0.3",
 "license_expression": "mit AND unknown",
 "declared_license": ":type = MIT, :file = LICENSE",
 "datasource_id": "cocoapods_podspec",
 "purl": "pkg:cocoapods/LoadingShimmer@1.0.3"
}

After:

"declared_license_expression": "mit",
"declared_license_expression_spdx": "MIT",
"license_detections": [
 {
 "license_expression": "mit",
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 4,
 "match_coverage": 100.0,
 "matcher": "1-hash",
 "license_expression": "mit",
 "rule_identifier": "mit_in_manifest.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/mit_in_manifest.RULE",
 "matched_text": ":type = MIT, :file = LICENSE"
 }
],
 "identifier": "mit-74f1df5b-f94d-2423-6bb8-3e4d809c26a5"
 }
],
"other_license_expression": null,
"other_license_expression_spdx": null,
"other_license_detections": [],
"extracted_license_statement": ":type = MIT, :file = LICENSE",

Previously in package data only the license_expression was present and it was very hard to debug
license detections. Now there’s a license_detections field with the detections, same as
the resource license_detections, with additional declared_license_expression and
other_license_expression with their SPDX counterparts. The declared_license field
also has been renamed to extracted_license_statement.

Codebase level Unique License Detection

We now have a new codebase level attribute license_detections which has Unique
License Detection across the codebase, in both packages and resources. They are
linked by a common attribute identifier containing the license_expression
and a UUID generated from the match content. The match level data is only present
at the resource level if needed, to look at details.

New codebase level attribute:

{
 "license_detections": [
 {
 "identifier": "epl_1_0-583490fb-0b3a-f445-a1b9-1b96423b9ec3",
 "license_expression": "epl-1.0",
 "detection_count": 2,
 "detection_log": []
 }
]
}

For the corresponding resource level license detection:

"license_detections": [
 {
 "license_expression": "epl-1.0",
 "matches": [
 {
 "score": 99.34,
 "start_line": 12,
 "end_line": 25,
 "matched_length": 150,
 "match_coverage": 99.34,
 "matcher": "3-seq",
 "license_expression": "epl-1.0",
 "rule_identifier": "epl-1.0_3.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/epl-1.0_3.RULE",
 },
 {
 "score": 100.0,
 "start_line": 17,
 "end_line": 17,
 "matched_length": 8,
 "match_coverage": 100.0,
 "matcher": "2-aho",
 "license_expression": "epl-1.0",
 "rule_identifier": "epl-1.0_7.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/epl-1.0_7.RULE",
 }
],
 "detection_log": [],
 "identifier": "epl_1_0-583490fb-0b3a-f445-a1b9-1b96423b9ec3"
 }
]

LicenseMatch Result Data

LicenseMatch data was based on a license key instead of being based
on a license-expression.

So if there is a gpl-2.0 AND patent-disclaimer license expression detected
from a single LicenseMatch, there were two entries in the licenses list
for that resource, one for each license key, (here gpl-2.0 and
patent-disclaimer respectively). This repeats the match details as these
two entries have the same details except the license key.

We should only add one entry per match (and therefore per rule) and here
the primary attribute should be the license-expression, rather than the
license-key.

We also used to create a mapping inside a mapping in these license details
to refer to the license rule (and there are other inconsistencies in how we
report here). We are now just reporting a flat mapping here, and all the
rule details are also not present in the license match, and only available
as an optional reference.

See this before/after comparision to see how the license data in results has
evolved.

Before:

"licenses": [
 {
 "key": "gpl-2.0",
 "score": 100.0,
 "name": "GNU General Public License 2.0",
 "short_name": "GPL 2.0",
 "category": "Copyleft",
 "is_exception": false,
 "is_unknown": false,
 "owner": "Free Software Foundation (FSF)",
 "homepage_url": "http://www.gnu.org/licenses/gpl-2.0.html",
 "text_url": "http://www.gnu.org/licenses/gpl-2.0.txt",
 "reference_url": "https://scancode-licensedb.aboutcode.org/gpl-2.0",
 "scancode_text_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/gpl-2.0.LICENSE",
 "scancode_data_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/gpl-2.0.yml",
 "spdx_license_key": "GPL-2.0-only",
 "spdx_url": "https://spdx.org/licenses/GPL-2.0-only",
 "start_line": 4,
 "end_line": 30,
 "matched_rule": {
 "identifier": "gpl-2.0_and_patent-disclaimer_3.RULE",
 "license_expression": "gpl-2.0 AND patent-disclaimer",
 "licenses": [
 "gpl-2.0",
 "patent-disclaimer"
],
 "referenced_filenames": [],
 "is_license_text": false,
 "is_license_notice": true,
 "is_license_reference": false,
 "is_license_tag": false,
 "is_license_intro": false,
 "has_unknown": false,
 "matcher": "2-aho",
 "rule_length": 185,
 "matched_length": 185,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
 },
 {
 "key": "patent-disclaimer",
 "score": 100.0,
 "name": "Generic patent disclaimer",
 "short_name": "Generic patent disclaimer",
 "category": "Permissive",
 "is_exception": false,
 "is_unknown": false,
 "owner": "Unspecified",
 "homepage_url": null,
 "text_url": "",
 "reference_url": "https://scancode-licensedb.aboutcode.org/patent-disclaimer",
 "scancode_text_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/patent-disclaimer.LICENSE",
 "scancode_data_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/patent-disclaimer.yml",
 "spdx_license_key": "LicenseRef-scancode-patent-disclaimer",
 "spdx_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/patent-disclaimer.LICENSE",
 "start_line": 4,
 "end_line": 30,
 "matched_rule": {
 "identifier": "gpl-2.0_and_patent-disclaimer_3.RULE",
 "license_expression": "gpl-2.0 AND patent-disclaimer",
 "licenses": [
 "gpl-2.0",
 "patent-disclaimer"
],
 "referenced_filenames": [],
 "is_license_text": false,
 "is_license_notice": true,
 "is_license_reference": false,
 "is_license_tag": false,
 "is_license_intro": false,
 "has_unknown": false,
 "matcher": "2-aho",
 "rule_length": 185,
 "matched_length": 185,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
 }
],
"license_expressions": [
 "gpl-2.0 AND patent-disclaimer"
],

After:

"license_detections": [
 {
 "license_expression": "gpl-2.0 AND patent-disclaimer",
 "matches": [
 {
 "score": 100.0,
 "start_line": 4,
 "end_line": 30,
 "matched_length": 185,
 "match_coverage": 100.0,
 "matcher": "2-aho",
 "license_expression": "gpl-2.0 AND patent-disclaimer",
 "rule_identifier": "gpl-2.0_and_patent-disclaimer_3.RULE",
 "rule_relevance": 100,
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/gpl-2.0_and_patent-disclaimer_3.RULE"
 }
],
 "identifier": "gpl_2_0_and_patent_disclaimer-3bb2602f-86f5-b9da-9bf5-b52e6920c8d1"
 }
],

Only reference License related data

Before 32.x all license related data was inlined in each match, and this repeats
a lot of information. This repeatation exists in three levels:

	License-level Data (a license-key)

	Rule-level Data (a license rule)

	LicenseDetection Data (a license detection)

License Data

This is referencing data related to whole licenses, references by their license key.

Example: apache-2.0

Other attributes are it’s full test, links to origin, licenseDB, spdx, osi etc.

Rule Data

This is referencing data related to a LicenseDB entry.
I.e. the identifier is a RULE or a LICENSE file.

Example: apache-2.0_2.RULE

Other attributes are it’s license-expression, the boolean fields, length, relevance etc.

CLI option

This is now default with the CLI option --license, which references from
the match License-level Data and LicenseDB-level Data, and removes the actual data from
the matches, and adds them to two top-level lists.

Comparision: Before/After license references

To compare how the license output data changes between when license references are not collected
vs when they are collected (which is default from version 32.x), check out the before/after
comparision below.

Before:

{
 "files": [
 {
 "detected_license_expression": "apache-2.0",
 "detected_license_expression_spdx": "Apache-2.0",
 "license_detections": [
 {
 "license_expression": "apache-2.0",
 "detection_log": [
 "not-combined"
],
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 4,
 "match_coverage": 100.0,
 "matcher": "1-hash",
 "license_expression": "apache-2.0",
 "rule_identifier": "apache-2.0_65.RULE",
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/apache-2.0_65.RULE",
 "referenced_filenames": [],
 "is_license_text": false,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": true,
 "is_license_intro": false,
 "rule_length": 4,
 "rule_relevance": 100,
 "matched_text": "License: Apache-2.0",
 "licenses": [
 {
 "key": "apache-2.0",
 "name": "Apache License 2.0",
 "short_name": "Apache 2.0",
 "category": "Permissive",
 "is_exception": false,
 "is_unknown": false,
 "owner": "Apache Software Foundation",
 "homepage_url": "http://www.apache.org/licenses/",
 "text_url": "http://www.apache.org/licenses/LICENSE-2.0",
 "reference_url": "https://scancode-licensedb.aboutcode.org/apache-2.0",
 "scancode_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/apache-2.0.LICENSE",
 "spdx_license_key": "Apache-2.0",
 "spdx_url": "https://spdx.org/licenses/Apache-2.0"
 }
]
 }
]
 }
],
 "license_clues": [],
 }
]
}

After:

{
 "license_references": [
 {
 "key": "apache-2.0",
 "short_name": "Apache 2.0",
 "name": "Apache License 2.0",
 "category": "Permissive",
 "owner": "Apache Software Foundation",
 "homepage_url": "http://www.apache.org/licenses/",
 "notes": "Per SPDX.org, this version was released January 2004 This license is OSI\ncertified\n",
 "is_builtin": true,
 "spdx_license_key": "Apache-2.0",
 "other_spdx_license_keys": [
 "LicenseRef-Apache",
 "LicenseRef-Apache-2.0"
],
 "osi_license_key": "Apache-2.0",
 "text_urls": [
 "http://www.apache.org/licenses/LICENSE-2.0"
],
 "osi_url": "http://opensource.org/licenses/apache2.0.php",
 "faq_url": "http://www.apache.org/foundation/licence-FAQ.html",
 "other_urls": [
 "http://www.opensource.org/licenses/Apache-2.0",
 "https://opensource.org/licenses/Apache-2.0",
 "https://www.apache.org/licenses/LICENSE-2.0"
],
 "text": "Apache License\nVersion 2.0, {Truncated text}"
 }
],
 "license_rule_references": [
 {
 "license_expression": "apache-2.0",
 "rule_identifier": "apache-2.0_65.RULE",
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/apache-2.0_65.RULE",
 "referenced_filenames": [],
 "is_license_text": false,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": true,
 "is_license_intro": false,
 "rule_length": 4,
 "rule_relevance": 100,
 "rule_text": "license: Apache-2.0"
 }
],
 "files": [
 {
 "detected_license_expression": "apache-2.0",
 "detected_license_expression_spdx": "Apache-2.0",
 "license_detections": [
 {
 "license_expression": "apache-2.0",
 "detection_log": [
 "not-combined"
],
 "matches": [
 {
 "score": 100.0,
 "start_line": 1,
 "end_line": 1,
 "matched_length": 4,
 "match_coverage": 100.0,
 "matcher": "1-hash",
 "license_expression": "apache-2.0",
 "rule_identifier": "apache-2.0_65.RULE",
 "matched_text": "License: Apache-2.0",
 "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/apache-2.0_65.RULE"
 }
]
 }
],
 "license_clues": [],
 }
]
}

LicenseDetection Data

This is referencing by LicenseDetections objects, and has one or multiple
license matches. This is linked to the resource level detections through
an identifier attribute present in both resource and codebase level
detections. See the Codebase level Unique License Detection above for more
details on this.

There could be a list of ambiguous detections as a summary to review.
This is WIP, see scancode-toolkit#3122 [https://github.com/nexB/scancode-toolkit/issues/3122].

Supported package manifests and package datafiles

Scancode supports a wide variety of package manifests, lockfiles
and other package datafiles containing package and dependency
information.

This documentation page is generated automatically from available package
parsers in scancode-toolkit during documentation builds.

Supported Package Parsers

	Description

	Path Patterns

	Package type

	Datasource ID

	Primary Language

	Documentation URL

	AboutCode ABOUT file

	*.ABOUT

	about

	about_file

	None

	https://aboutcode-toolkit.readthedocs.io/en/latest/specification.html

	Alpine Linux .apk package archive

	*.apk

	alpine

	alpine_apk_archive

	None

	https://wiki.alpinelinux.org/wiki/Alpine_package_format

	Alpine Linux APKBUILD package script

	*APKBUILD

	alpine

	alpine_apkbuild

	None

	https://wiki.alpinelinux.org/wiki/APKBUILD_Reference

	Alpine Linux installed package database

	*lib/apk/db/installed

	alpine

	alpine_installed_db

	None

	None

	Android application package

	*.apk

	android

	android_apk

	Java

	https://en.wikipedia.org/wiki/Apk_(file_format)

	Android library archive

	*.aar

	android_lib

	android_aar_library

	Java

	https://developer.android.com/studio/projects/android-library

	Autotools configure script

	*/configure
*/configure.ac

	autotools

	autotools_configure

	None

	https://www.gnu.org/software/automake/

	Apache Axis2 module archive

	*.mar

	axis2

	axis2_mar

	Java

	https://axis.apache.org/axis2/java/core/docs/modules.html

	Apache Axis2 module.xml

	*/meta-inf/module.xml

	axis2

	axis2_module_xml

	Java

	https://axis.apache.org/axis2/java/core/docs/modules.html

	Bazel BUILD

	*/BUILD

	bazel

	bazel_build

	None

	https://bazel.build/

	Bower package

	*/bower.json
*/.bower.json

	bower

	bower_json

	JavaScript

	https://bower.io

	Buck file

	*/BUCK

	buck

	buck_file

	None

	https://buck.build/

	Buck metadata file

	*/METADATA.bzl

	buck

	buck_metadata

	None

	https://buck.build/

	Microsoft cabinet archive

	*.cab

	cab

	microsoft_cabinet

	C

	https://docs.microsoft.com/en-us/windows/win32/msi/cabinet-files

	Rust Cargo.lock dependencies lockfile

	*/Cargo.lock
*/cargo.lock

	cargo

	cargo_lock

	Rust

	https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html

	Rust Cargo.toml package manifest

	*/Cargo.toml
*/cargo.toml

	cargo

	cargo_toml

	Rust

	https://doc.rust-lang.org/cargo/reference/manifest.html

	Chef cookbook metadata.json

	*/metadata.json

	chef

	chef_cookbook_metadata_json

	Ruby

	https://docs.chef.io/config_rb_metadata/

	Chef cookbook metadata.rb

	*/metadata.rb

	chef

	chef_cookbook_metadata_rb

	Ruby

	https://docs.chef.io/config_rb_metadata/

	Chrome extension

	*.crx

	chrome

	chrome_crx

	JavaScript

	https://chrome.google.com/extensions

	Cocoapods Podfile

	*Podfile

	cocoapods

	cocoapods_podfile

	Objective-C

	https://guides.cocoapods.org/using/the-podfile.html

	Cocoapods Podfile.lock

	*Podfile.lock

	cocoapods

	cocoapods_podfile_lock

	Objective-C

	https://guides.cocoapods.org/using/the-podfile.html

	Cocoapods .podspec

	*.podspec

	cocoapods

	cocoapods_podspec

	Objective-C

	https://guides.cocoapods.org/syntax/podspec.html

	Cocoapods .podspec.json

	*.podspec.json

	cocoapods

	cocoapods_podspec_json

	Objective-C

	https://guides.cocoapods.org/syntax/podspec.html

	PHP composer manifest

	*composer.json

	composer

	php_composer_json

	PHP

	https://getcomposer.org/doc/04-schema.md

	PHP composer lockfile

	*composer.lock

	composer

	php_composer_lock

	PHP

	https://getcomposer.org/doc/01-basic-usage.md#commit-your-composer-lock-file-to-version-control

	conan external source

	*/conandata.yml

	conan

	conan_conandata_yml

	C++

	https://docs.conan.io/2/tutorial/creating_packages/handle_sources_in_packages.html#using-the-conandata-yml-file

	conan recipe

	*/conanfile.py

	conan

	conan_conanfile_py

	C++

	https://docs.conan.io/2.0/reference/conanfile.html

	Conda meta.yml manifest

	*/meta.yaml

	conda

	conda_meta_yaml

	None

	https://docs.conda.io/

	CPAN Perl dist.ini

	*/dist.ini

	cpan

	cpan_dist_ini

	Perl

	https://metacpan.org/pod/Dist::Zilla::Tutorial

	CPAN Perl Makefile.PL

	*/Makefile.PL

	cpan

	cpan_makefile

	Perl

	https://www.perlmonks.org/?node_id=128077

	CPAN Perl module MANIFEST

	*/MANIFEST

	cpan

	cpan_manifest

	Perl

	https://metacpan.org/pod/Module::Manifest

	CPAN Perl META.json

	*/META.json

	cpan

	cpan_meta_json

	Perl

	https://metacpan.org/pod/Parse::CPAN::Meta

	CPAN Perl META.yml

	*/META.yml

	cpan

	cpan_meta_yml

	Perl

	https://metacpan.org/pod/CPAN::Meta::YAML

	CRAN package DESCRIPTION

	*/DESCRIPTION

	cran

	cran_description

	R

	https://r-pkgs.org/description.html

	Debian control file - extracted layout

	*/control.tar.gz-extract/control

	deb

	debian_control_extracted_deb

	None

	https://www.debian.org/doc/debian-policy/ch-controlfields.html

	Debian control file - source layout

	*/debian/control

	deb

	debian_control_in_source

	None

	https://www.debian.org/doc/debian-policy/ch-controlfields.html

	Debian machine readable file in source

	usr/share/doc//copyright

	deb

	debian_copyright_in_package

	None

	https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

	Debian machine readable file in source

	*/debian/copyright

	deb

	debian_copyright_in_source

	None

	https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

	Debian machine readable file standalone

	*/copyright
*_copyright

	deb

	debian_copyright_standalone

	None

	https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

	Debian binary package archive

	*.deb

	deb

	debian_deb

	None

	https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html

	Debian distroless installed database

	var/lib/dpkg/status.d/

	deb

	debian_distroless_installed_db

	None

	https://www.debian.org/doc/debian-policy/ch-controlfields.html

	Debian installed file paths list

	var/lib/dpkg/info/.list

	deb

	debian_installed_files_list

	None

	None

	Debian installed file MD5 and paths list

	var/lib/dpkg/info/.md5sums

	deb

	debian_installed_md5sums

	None

	https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts

	Debian installed packages database

	*var/lib/dpkg/status

	deb

	debian_installed_status_db

	None

	https://www.debian.org/doc/debian-policy/ch-controlfields.html

	Debian file MD5 and paths list in .deb archive

	*/control.tar.gz-extract/md5sums
*/control.tar.xz-extract/md5sums

	deb

	debian_md5sums_in_extracted_deb

	None

	https://www.debian.org/doc/manuals/debian-handbook/sect.package-meta-information.en.html#sect.configuration-scripts

	Debian package original source archive

	*.orig.tar.xz
*.orig.tar.gz

	deb

	debian_original_source_tarball

	None

	https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html

	Debian source control file

	*.dsc

	deb

	debian_source_control_dsc

	None

	https://wiki.debian.org/dsc

	Debian source package metadata archive

	*.debian.tar.xz
*.debian.tar.gz

	deb

	debian_source_metadata_tarball

	None

	https://manpages.debian.org/unstable/dpkg-dev/deb.5.en.html

	macOS disk image file

	*.dmg
*.sparseimage

	dmg

	apple_dmg

	None

	https://en.wikipedia.org/wiki/Apple_Disk_Image

	Java EAR application.xml

	*/META-INF/application.xml

	ear

	java_ear_application_xml

	Java

	https://en.wikipedia.org/wiki/EAR_(file_format)

	Java EAR Enterprise application archive

	*.ear

	ear

	java_ear_archive

	Java

	https://en.wikipedia.org/wiki/EAR_(file_format)

	FreeBSD compact package manifest

	*/+COMPACT_MANIFEST

	freebsd

	freebsd_compact_manifest

	None

	https://www.freebsd.org/cgi/man.cgi?pkg-create(8)#MANIFEST_FILE_DETAILS

	RubyGems gem package archive

	*.gem

	gem

	gem_archive

	Ruby

	https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/

	RubyGems gem package extracted archive

	*/metadata.gz-extract

	gem

	gem_archive_extracted

	Ruby

	https://web.archive.org/web/20220326093616/https://piotrmurach.com/articles/looking-inside-a-ruby-gem/

	RubyGems gemspec manifest - installed vendor/bundle/specifications layout

	/specifications/.gemspec

	gem

	gem_gemspec_installed_specifications

	Ruby

	https://guides.rubygems.org/specification-reference/

	RubyGems Bundler Gemfile

	*/Gemfile
/.gemfile
/Gemfile-

	gem

	gemfile

	Ruby

	https://bundler.io/man/gemfile.5.html

	RubyGems Bundler Gemfile - extracted layout

	*/data.gz-extract/Gemfile

	gem

	gemfile_extracted

	Ruby

	https://bundler.io/man/gemfile.5.html

	RubyGems Bundler Gemfile.lock

	*/Gemfile.lock

	gem

	gemfile_lock

	Ruby

	https://bundler.io/man/gemfile.5.html

	RubyGems Bundler Gemfile.lock - extracted layout

	*/data.gz-extract/Gemfile.lock

	gem

	gemfile_lock_extracted

	Ruby

	https://bundler.io/man/gemfile.5.html

	RubyGems gemspec manifest

	*.gemspec

	gem

	gemspec

	Ruby

	https://guides.rubygems.org/specification-reference/

	RubyGems gemspec manifest - extracted data layout

	/data.gz-extract/.gemspec

	gem

	gemspec_extracted

	Ruby

	https://guides.rubygems.org/specification-reference/

	Go modules file

	*/go.mod

	golang

	go_mod

	Go

	https://go.dev/ref/mod

	Go module cheksums file

	*/go.sum

	golang

	go_sum

	Go

	https://go.dev/ref/mod#go-sum-files

	Go Godeps

	*/Godeps.json

	golang

	godeps

	Go

	https://github.com/tools/godep

	Haxe haxelib.json metadata file

	*/haxelib.json

	haxe

	haxelib_json

	Haxe

	https://lib.haxe.org/documentation/creating-a-haxelib-package/

	InstallShield installer

	*.exe

	installshield

	installshield_installer

	None

	https://www.revenera.com/install/products/installshield

	iOS package archive

	*.ipa

	ios

	ios_ipa

	Objective-C

	https://en.wikipedia.org/wiki/.ipa

	ISO disk image

	*.iso
*.udf
*.img

	iso

	iso_disk_image

	None

	https://en.wikipedia.org/wiki/ISO_9660

	Ant IVY dependency file

	*/ivy.xml

	ivy

	ant_ivy_xml

	Java

	https://ant.apache.org/ivy/history/latest-milestone/ivyfile.html

	JAR Java Archive

	*.jar

	jar

	java_jar

	None

	https://en.wikipedia.org/wiki/JAR_(file_format)

	Java JAR MANIFEST.MF

	*/META-INF/MANIFEST.MF

	jar

	java_jar_manifest

	Java

	https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html

	JBOSS service archive

	*.sar

	jboss-service

	jboss_sar

	Java

	https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html

	JBOSS service.xml

	*/meta-inf/jboss-service.xml

	jboss-service

	jboss_service_xml

	Java

	https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/ch02s01.html

	Linux OS release metadata file

	*etc/os-release
*usr/lib/os-release

	linux-distro

	etc_os_release

	None

	https://www.freedesktop.org/software/systemd/man/os-release.html

	Gradle build script

	*/build.gradle
*/build.gradle.kts

	maven

	build_gradle

	None

	None

	Apache Maven pom

	*.pom
*pom.xml

	maven

	maven_pom

	Java

	https://maven.apache.org/pom.html

	Apache Maven pom properties file

	*/pom.properties

	maven

	maven_pom_properties

	Java

	https://maven.apache.org/pom.html

	Meteor package.js

	*/package.js

	meteor

	meteor_package

	JavaScript

	https://docs.meteor.com/api/packagejs.html

	Mozilla XPI extension

	*.xpi

	mozilla

	mozilla_xpi

	JavaScript

	https://en.wikipedia.org/wiki/XPInstall

	Microsoft MSI installer

	*.msi

	msi

	msi_installer

	None

	https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal

	npm package.json

	*/package.json

	npm

	npm_package_json

	JavaScript

	https://docs.npmjs.com/cli/v8/configuring-npm/package-json

	npm package-lock.json lockfile

	*/package-lock.json
*/.package-lock.json

	npm

	npm_package_lock_json

	JavaScript

	https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json

	npm shrinkwrap.json lockfile

	*/npm-shrinkwrap.json

	npm

	npm_shrinkwrap_json

	JavaScript

	https://docs.npmjs.com/cli/v8/configuring-npm/npm-shrinkwrap-json

	yarn.lock lockfile v1 format

	*/yarn.lock

	npm

	yarn_lock_v1

	JavaScript

	https://classic.yarnpkg.com/lang/en/docs/yarn-lock/

	yarn.lock lockfile v2 format

	*/yarn.lock

	npm

	yarn_lock_v2

	JavaScript

	https://classic.yarnpkg.com/lang/en/docs/yarn-lock/

	NSIS installer

	*.exe

	nsis

	nsis_installer

	None

	https://nsis.sourceforge.io/Main_Page

	NuGet nupkg package archive

	*.nupkg

	nuget

	nuget_nupkg

	None

	https://en.wikipedia.org/wiki/Open_Packaging_Conventions

	NuGet nuspec package manifest

	*.nuspec

	nuget

	nuget_nupsec

	None

	https://docs.microsoft.com/en-us/nuget/reference/nuspec

	Ocaml Opam file

	*opam

	opam

	opam_file

	Ocaml

	https://opam.ocaml.org/doc/Manual.html#Common-file-format

	Java OSGi MANIFEST.MF

	None

	osgi

	java_osgi_manifest

	Java

	https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html

	Dart pubspec lockfile

	*pubspec.lock

	pubspec

	pubspec_lock

	dart

	https://web.archive.org/web/20220330081004/https://gpalma.pt/blog/what-is-the-pubspec-lock/

	Dart pubspec manifest

	*pubspec.yaml

	pubspec

	pubspec_yaml

	dart

	https://dart.dev/tools/pub/pubspec

	Conda yaml manifest

	*conda.yaml
*conda.yml

	pypi

	conda_yaml

	Python

	https://docs.conda.io/

	pip requirements file

	requirement.txt
requirement.pip
requirement.in
*requires.txt
requirements/.txt
requirements/.pip
requirements/.in
*reqs.txt

	pypi

	pip_requirements

	Python

	https://pip.pypa.io/en/latest/reference/requirements-file-format/

	Pipfile

	*Pipfile

	pypi

	pipfile

	Python

	https://github.com/pypa/pipfile

	Pipfile.lock

	*Pipfile.lock

	pypi

	pipfile_lock

	Python

	https://github.com/pypa/pipfile

	PyPI editable local installation PKG-INFO

	*.egg-info/PKG-INFO

	pypi

	pypi_editable_egg_pkginfo

	Python

	https://peps.python.org/pep-0376/

	PyPI egg

	*.egg

	pypi

	pypi_egg

	Python

	https://web.archive.org/web/20210604075235/http://peak.telecommunity.com/DevCenter/PythonEggs

	PyPI extracted egg PKG-INFO

	*/EGG-INFO/PKG-INFO

	pypi

	pypi_egg_pkginfo

	Python

	https://peps.python.org/pep-0376/

	Python pyproject.toml

	*pyproject.toml

	pypi

	pypi_pyproject_toml

	Python

	https://peps.python.org/pep-0621/

	PyPI extracted sdist PKG-INFO

	*/PKG-INFO

	pypi

	pypi_sdist_pkginfo

	Python

	https://peps.python.org/pep-0314/

	Python setup.cfg

	*setup.cfg

	pypi

	pypi_setup_cfg

	Python

	https://peps.python.org/pep-0390/

	Python setup.py

	*setup.py

	pypi

	pypi_setup_py

	Python

	https://docs.python.org/3.11/distutils/setupscript.html

	PyPI wheel

	*.whl

	pypi

	pypi_wheel

	Python

	https://peps.python.org/pep-0427/

	PyPI installed wheel METADATA

	*.dist-info/METADATA

	pypi

	pypi_wheel_metadata

	Python

	https://packaging.python.org/en/latest/specifications/core-metadata/

	None

	*/README.android
*/README.chromium
*/README.facebook
*/README.google
*/README.thirdparty

	readme

	readme

	None

	None

	RPM package archive

	*.rpm
*.src.rpm
*.srpm
*.mvl
*.vip

	rpm

	rpm_archive

	None

	https://en.wikipedia.org/wiki/RPM_Package_Manager

	RPM installed package BDB database

	*var/lib/rpm/Packages

	rpm

	rpm_installed_database_bdb

	None

	https://man7.org/linux/man-pages/man8/rpmdb.8.html

	RPM installed package NDB database

	*usr/lib/sysimage/rpm/Packages.db

	rpm

	rpm_installed_database_ndb

	None

	https://fedoraproject.org/wiki/Changes/NewRpmDBFormat

	RPM installed package SQLite database

	*rpm/rpmdb.sqlite

	rpm

	rpm_installed_database_sqlite

	None

	https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb

	RPM specfile

	*.spec

	rpm

	rpm_spefile

	None

	https://en.wikipedia.org/wiki/RPM_Package_Manager

	shell archive

	*.shar

	shar

	shar_shell_archive

	None

	https://en.wikipedia.org/wiki/Shar

	Squashfs disk image

	None

	squashfs

	squashfs_disk_image

	None

	https://en.wikipedia.org/wiki/SquashFS

	Java Web Application Archive

	*.war

	war

	java_war_archive

	Java

	https://en.wikipedia.org/wiki/WAR_(file_format)

	Java WAR web/xml

	*/WEB-INF/web.xml

	war

	java_war_web_xml

	Java

	https://en.wikipedia.org/wiki/WAR_(file_format)

	Windows Registry Installed Program - Docker SOFTWARE

	*/Files/Windows/System32/config/SOFTWARE

	windows-program

	win_reg_installed_programs_docker_file_software

	None

	https://en.wikipedia.org/wiki/Windows_Registry

	Windows Registry Installed Program - Docker Software Delta

	*/Hives/Software_Delta

	windows-program

	win_reg_installed_programs_docker_software_delta

	None

	https://en.wikipedia.org/wiki/Windows_Registry

	Windows Registry Installed Program - Docker UtilityVM SOFTWARE

	*/UtilityVM/Files/Windows/System32/config/SOFTWARE

	windows-program

	win_reg_installed_programs_docker_utility_software

	None

	https://en.wikipedia.org/wiki/Windows_Registry

	Microsoft Update Manifest .mum file

	*.mum

	windows-update

	microsoft_update_manifest_mum

	None

	None

	Windows Portable Executable metadata

	*.exe
*.dll
*.mui
*.mun
*.com
*.winmd
*.sys
*.tlb
.exe_
.dll_
.mui_
.mun_
.com_
.winmd_
.sys_
.tlb_
*.ocx

	winexe

	windows_executable

	None

	https://en.wikipedia.org/wiki/Portable_Executable

Index

 _images/output_html3.png
samplesiarciatb ar gz

plain aibal

tnslentrpise dejacode confurur di cense apache:

[p— [ES PR—— [E——
R p— S O e e ——
boost10 [Boost10 permissve | Boost tp=dlenterrise dejacode comlunundielicense boost: |y boost orgluserslicense il
coby25 | coBY-2S permissve | Creative Commons p=dlenterprise dejacode comluniundiglicense S B |y cresivecommons orglicensesiy2 5
R r—
RS P [E— = [
w0 |erio comet o [S (S ———————
PN e e fe— [T,
plus-ada | exception Limited v plus-ada
380ss EULA 3Boss Comm s Jlenterprise dejacode comfumumdig-icense:jboss:

[o— gy iy =
W2t |iomziomer | GOt | s o roundason | beiss deacods conlurtun i icense oo . | s afensegod emestont2
=) £ frertn)
R vemesne | wr [rE————————— [—————
bt — e | o [———————— . —

[— s [———
o [mmicme vemssne | [EeT——————

‘Generated ith ScanCode and provide on a °AS 15" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, eher express or mpid. o conentcreatedfom ScanCode shoud be conside
‘scanning tool from nex inc. and ofhers. Visit hitp-/iuww nexb.com and hitps:/igithub. cominexBi/scancode-toolit for support and download.

_images/output_html_app1.png
License Summary | Copyright Summary Ciues File Detals Packages

Total Fles Scanned: 43

_images/output_html1.png
Copyrights and Licenses Information

path start end what value
samples/JGroups/EULA 3 108 | license jboss-eula
samples/JGroups/EULA 104 | 104 |copyright | Copyright 2006 Red Hat, Inc.
samples/JGroups/LICENSE 1 502 | license lgpl-2.1-plus
samples/JGroups/LICENSE 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/LICENSE 427 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/LICENSE 496 | 497 | copyright
samples/JGroups/licenses/Igpl.txt 1 502 | license lgpl-2.1-plus
samples/JGroups/licenses/Igpl.txt 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/licenses/Igpl.txt 427 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/licenses/Igpl.txt 496 | 497 | copyright
samples/JGroups/licenses/bouncycastle.txt 5 5 copyright | Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
samples/JGroups/licenses/bouncycastle.txt 7 18 license mit
samples/JGroups/licenses/apache-1.1.txt 2 56 license apache-1.1
samples/JGroups/licenses/apache-1.1.txt 4 5 copyright | Copyright (c) 2000 The Apache Software Foundation.
samples/JGroups/licenses/apache-1.1.txt 20 23 copyright
samples/JGrouns/licenses/apache-2.0.txt 2 202 | license avache-2.0

_images/output_html2.png
File Information

2017-

H

camplsisrcenshotng [— oo | 2017 | c2075 | o1ttoLieoboeTocScoaselscctonnaesTess | oeesadorTrsarezscssbtzasazsesTa
— e |resoe Ay P rp——
e arector | e None [241280 vore Nore

samplsiio arectory [0 None [28752 Nore Nore

el arectory | aen Nore [28103 [Nore Nore

JE— e | A e Y PR ——————

JE—— e |ucense A T F——————
pem—— Grecon | ieeres None [5460 |vore Nore

= arector [e None [15209 Nore Nore

e —— e | o |20 d093e | taboTazenedibdbSebOLaTAct e 2enOSS T | F4SERRZRRBIGIECS Te2bandeSSTS

camplesiGroupsiersesboumoyasiest |fe | bancyastes o0 2|15 | ToacbOooaToMTo009905060110516760 | fcceBesaSToSSeSeZb 12856155

somplsiGropsiensesapache 1106 |fe | apache 168 o255 2007 | 1o60s195TOTeN2eS40 10066 1593956400080 | ESOBGTISSESHIGHO 125005 TIASOe

complesiGroupsiensesapache 206 |fle | apache 208 o |20 gm0 | eroTsessptedse0zelatecs0e2135040002550 7o SeSacl15cdaToA2204BT
samplsiGroupliensesep 100t e |msom I P S PR ——
‘samples/Groupsisrc/RouterStub java file RouterStub.java Jjava 2017 | 9913 | c1168181BeeTbadccoi4440c04c099729d716052 | eecle23494achedB0BBCO3bCeBITI2.

0922

_images/output_json.png
sampledeflicjson %

:"Generated with ScanCode and provided on an \"AS IS\" BASIS, WIT

ancode_notice

_images/output_jsonlines.png
7
£

samples/arch
‘samples/JGroups/EUL
samples/JGroups/LICENSE
samples/Jroups/License:
samples/JGroups/src”,
‘samples/Jroups/icenses/lgpL. txt:
‘samples/Jroups/Licenses/bouncycastle. txt
‘samples/Jroups/Licenses/apache-1.1.txt"
‘samples/JGroups/Licenses/apache-2.0. txt"
‘samples/Jroups/Licenses/cpl-1.0. txt", "scan_errors”:[1
‘samples/Jroups/src/Routerstub. java" , "scan_errors®: [1,
sanples/Joroups/src/FixedvenbershipToken. java® “sca
samples/JGroups/src/RATE_LIMITER
sanples/J6roups/src/S3_PING. java
samples/Jroups/src/Guardedsy . javar
samples/Jroups/src/ImutableReference. javar
samples/JGroups/src/RouterStubMianager
samples/zLib/zutil |
samples/zLib/deflat
samples/zLib/zlib.h'
samples/zLib/zutil.
samples/zLib/deflate.|
samples/zlib/adler32..
‘samples/zlib/iostrean
samples/zlib/dotzlib
samples/zLib/gc:

11, "packages”: 11}
kages: (131}

"scan errors
"scanerrors

packages”: 11}
3

rights": 1, "packages": (1
1

i i i i i i i i i i i i i i i i i i T

_images/output_html_app2.png
sampes

License Summary | Copyright Summary | Ciues File Detais Packages

Total Fles Scanned: 43

_images/output_html_app3.png
Lcense Summary Copyght Summary Clues | FleDetals | packages.
‘Show 50¥] enties sewem [
xtens Fie
pan 4 e o wame bt owe sz swar wos. ame type
samplesiarch drecioy arcn 20108 B
1708 STeocciesoATISHSdSd0007 | 2062707 aboSbRASSEEL
sampesiachibag: e e 3 20108 s applcatonix.
samplesticroups dreciory JGrous. 20120 2
708 [—————
sampesiicroupsiELA e s = e s fero s
ar0n TSNS ————
samplesiiGroupsiLICENSE ucense 20030
e 2 Sazbesdabecoonec bsozent =
samplestiGroupsficenses diectory iconses stc0s s
samplesticroupsficnsesiap - - 005 L issdsissTarichizesiolbes scoondrssizsaidborasees
e 1o e = 1 ssaasseaosonds osaoe =
samplesticroupsficensesiap o - 201705 e o S ——
chez0 e apche 2 2 B0 pearashasecnsees zzcar pan
samplesticroupsficensesiio - - 705 7alachowsarsasToiocdans ofdadesesasTosssiszbi2
ncycase e 2 2 Preswevy persy =
samplesiicroupsficensesicy - - 201705 P R —
Fiom 2 BB oecradzzacnicese sosrsodsa s
‘ 3
Shouing 11010 0f 43 enties. o [1]2 3 4 5 me

_images/output_jsonpp.png
anples/JGroups/licenses/apache-1.1. txt",
file",
‘apache-1.1.txt

937,

18609195787 fchf2e5401b966150395640606011
'8C909d7735128f4fdb0128ee57 Tha3oe"
nutl,

ext/plain’,

\SCIT text, with CRLF line terminators"

Foundation.

_images/output_spdx_rdf1.png
"http://vhaw..w3.0rg/1999/62/22-rdf-syntax-ns"
http: //wiw.w3.0rg/2000/01/ rdf - schemas"

<ns1:SpdxDocunent rdf :abou
<ns1:referencesFiles
<ns1:File rdf:nodeId="Ncb42239258dbdeddbed44a0ef350c606">
<nsl:licenselnfolnFile rdf:resource="http://spdx.org/licenses/LGPL-2.1+"/>
<ns1: checksum>
<ns1:Checksun rdf:nodeID="Nbde3d8e53e734e1081632bb15ce0bdea">
<n1: checksunl/al ue>8f1a637d2e2ed1bdboebola7dcchSc12cc055Tel</ns 1 : checksum/alues
<ns1:algori thi>SHAT</ns1:algori thi
</ns1: Checksum>
</ns1: checksum>
icenseConcluded rdf: resource="http: //spdx.org/rdf/terns#noassertion"/>
<ns1: copyrightText>Copyright (c) 1991, 1999 Free Software Foundation, Inc.
copyrighted by the Free Software Foundation
</ns1: copyrightText>
1eane>. /sanples/J6roups/Licenses/lgpL. txt</ns1: Filelane
</ns1:File>
</ns1:referencesFile>
<ns1: referencesFile>
<ns1:File rdf:nodeld="Ndded3bccccBIac2b8579dbT726193208">
<ns1:copyrightText>Copyright 2005, JBoss Inc.
</ns1: copyrightText>

http://waw. Spdx.0rg/tools#SPDXANALYSTS ">

_images/output_spdx_tv_file.png
File

FileName: ./sanples/JGroups/EULA

FileChecksum: SHAL: eb2323a0424ecadc4136904e6143b72aaa0c fdde
LicenseConcluded: NOASSERTION

LicenselnfoInFile: LicenseRef-jboss-eula

FileCopyrightText: <text>Copyright 2086 Red Hat, Inc.
</text>

File

FileName: ./sanples/JGroups/LICENSE

FileChecksum: SHAL: e60c2e780886795dfac0ee36992b8edabecoBbce

LicenseConcluded: NOASSERTION

LicenselnfoInFile: LGPL-2.1+

FileCopyrightText: <text>Copyright (c) 1991, 1999 Free Software Foundation, Inc.

copyrighted by the Free Software Foundation
</text>

nav.xhtml

 Table of Contents

 		
 ScanCode Toolkit Documentation

 		
 Are you new to Scancode-Toolkit?

 		
 Table of Contents

 		
 Try ScanCode Toolkit

 		
 Installing ScanCode

 		
 Before you start using ScanCode

 		
 Scan a Codebase

 		
 Use ScanCode Better

 		
 All Tutorials/How-Tos

 		
 ScanCode Versions

 		
 Learn more about ScanCode Toolkit

 		
 CLI Reference

 		
 How Scancode Works

 		
 Plugins

 		
 Contribute

 		
 General Information

 		
 Contribute Code

 		
 Good First Issues

 		
 Add new Functionality/Enhancement to ScanCode

 		
 Update our Documentation

 		
 Participate in GSoC/GSoD

 		
 Getting Started

 		
 Home

 		
 Why ScanCode?

 		
 What does ScanCode Toolkit do?

 		
 How does it work?

 		
 Alternative?

 		
 History

 		
 Other Important Documentation

 		
 Comprehensive Installation

 		
 Before Installing

 		
 Installation as an Application: Downloading Releases

 		
 Installation via Docker:

 		
 Installation from Source Code: Git Clone

 		
 Installation as a library: via pip

 		
 Command Invocation Variations

 		
 Are you new to Scancode-Toolkit?

 		
 Table of Contents

 		
 Try ScanCode Toolkit

 		
 Installing ScanCode

 		
 Learn more about ScanCode Toolkit

 		
 Contribute

 		
 Command Line Interface Reference

 		
 Synopsis

 		
 Installation

 		
 Quickstart

 		
 Type of Options

 		
 Output Formats

 		
 Other Important Documentation

 		
 Getting Help from the Command Line

 		
 All Documentation/Help Options

 		
 Help text

 		
 Command Examples Text

 		
 Plugins Help Text

 		
 –list-packages Option

 		
 –print-options Option

 		
 All Available Options

 		
 All “Basic” Scan Options

 		
 All Extractcode Options

 		
 scancode-reindex-licenses Usage

 		
 Options

 		
 All “Core” Scan Options

 		
 All Scan Output Options

 		
 All “Output Control” Scan Options

 		
 All “Pre-Scan” Options

 		
 All “Post-Scan” Options

 		
 How to Run a Scan

 		
 Prerequisites

 		
 Looking into Files

 		
 Performing Extraction

 		
 Deciding Scan Options

 		
 Running The Scan

 		
 Other Important Documentation

 		
 Other available CLIs

 		
 scancode-reindex-licenses Usage

 		
 Options

 		
 All Extractcode Options

 		
 scancode-reindex-licenses command

 		
 Basic Options

 		
 All “Basic” Scan Options

 		
 –copyright Option

 		
 –license Option

 		
 –package Option

 		
 –info Option

 		
 –email Option

 		
 –url Option

 		
 –generated Option

 		
 –max-email Option

 		
 –max-url Option

 		
 –license-score Option

 		
 –license-text Option

 		
 –license-url-template Option

 		
 –license-text-diagnostics Option

 		
 –license-diagnostics Option

 		
 Core Options

 		
 All “Core” Scan Options

 		
 Comparing Progress Message Options

 		
 –timeout Option

 		
 –from-json Option

 		
 –max-in-memory Option

 		
 –max_depth Option

 		
 Scancode Output Formats

 		
 All Scan Output Options

 		
 Print to stdout (Terminal)

 		
 –json FILE

 		
 –json-pp FILE

 		
 –json-lines FILE

 		
 Comparing Different json Output Formats

 		
 –spdx-rdf FILE

 		
 –spdx-tv FILE

 		
 –html FILE

 		
 –html-app FILE

 		
 –csv FILE

 		
 –cyclonedx FILE

 		
 –cyclonedx-xml FILE

 		
 Custom Output Format

 		
 Controlling Scancode Output and Filters

 		
 All “Output Control” Scan Options

 		
 –strip-root Vs. –full-root

 		
 –ignore-author <pattern> Option

 		
 –ignore-copyright-holder <pattern> Option

 		
 –only-findings Plugin

 		
 Pre-Scan Options

 		
 All “Pre-Scan” Options

 		
 –ignore Option

 		
 –include Option

 		
 –classify

 		
 –facet Option

 		
 Glob Pattern Matching

 		
 What is a Facet?

 		
 Post-Scan Options

 		
 All “Post-Scan” Options

 		
 –mark-source Option

 		
 –consolidate Option

 		
 –filter-clues Option

 		
 –license-clarity-score Option

 		
 –license-policy FILE Option

 		
 –license-references Option

 		
 –summary Option

 		
 –tallies Option

 		
 –tallies-by-facet Option

 		
 –tallies-key-files Option

 		
 –tallies-with-details Option

 		
 Basic Tutorials

 		
 How to Run a Scan

 		
 Prerequisites

 		
 Looking into Files

 		
 Performing Extraction

 		
 Deciding Scan Options

 		
 Running The Scan

 		
 Other Important Documentation

 		
 How to Visualize Scan results

 		
 How To Extract Archives

 		
 Usage:

 		
 All Extractcode Options

 		
 How to specify Scancode Output Format

 		
 JSON

 		
 Print to stdout (Terminal)

 		
 HTML

 		
 Custom Output Format

 		
 How to set what will be detected in Scan

 		
 All “Basic” Scan Options

 		
 Different Scans

 		
 Add A Post-Scan Plugin

 		
 Scan plugins in scancode-toolkit

 		
 Built-In vs. Optional Installation

 		
 Example Post-Scan Plugin: Hello ScanCode

 		
 Load the plugin

 		
 More-complex examples

 		
 How-To Guides

 		
 How To Add a New License for Detection

 		
 How to add a new license for detection?

 		
 How to Add New License Rules for Enhanced Detection

 		
 How to add a new license detection rule?

 		
 How to Install External Licenses to Use in License Detection

 		
 How to install a plugin containing external licenses and/or rules

 		
 How to add external licenses and/or rules from a directory

 		
 scancode-reindex-licenses Usage

 		
 Options

 		
 How To Generate Attribution from a ScanCode Scan

 		
 How To generate attribution from a ScanCode scan?

 		
 Contribute

 		
 Contributing to Code Development

 		
 Code layout and conventions

 		
 Running tests

 		
 Thirdparty libraries and dependencies management

 		
 Using ScanCode as a Python library

 		
 How to cut a new release

 		
 Update version

 		
 Tag and publish

 		
 Automated Release Process

 		
 Contributing to the Documentation

 		
 Setup Local Build

 		
 Share Document Improvements

 		
 Continuous Integration

 		
 Style Checks Using Doc8

 		
 Interspinx

 		
 Style Conventions for the Documentaion

 		
 Converting from Markdown

 		
 Automatic Docs Generation

 		
 Roadmap

 		
 Legend

 		
 Work in Progress

 		
 Other work in progress

 		
 Completed features

 		
 Google Summer of Code 2017 - Final report

 		
 Project: Plugin architecture for ScanCode

 		
 1. Format :

 		
 2. Post-scan :

 		
 3. Pre-scan :

 		
 4. Scan (proper):

 		
 5. Other work:

 		
 6. What’s left?

 		
 Google Summer of Code 2019 - Final report

 		
 Project: scancode-toolkit to Python 3

 		
 Overview

 		
 Implementation

 		
 Challenging part of Project

 		
 Outcome

 		
 Google Summer of Code 2021 Final report

 		
 Organisation - AboutCode

 		
 Project: Detect Unknown Licenses and Indirect License References in Scancode

 		
 Description

 		
 Pre-GSoC

 		
 Plugins

 		
 Plugin Architecture

 		
 Abstract:

 		
 Description:

 		
 Existing solutions:

 		
 License Policy Plugin

 		
 Policy File Specification

 		
 Using the Plugin

 		
 Example Output

 		
 Plugin Tutorials

 		
 CPP Includes Plugin

 		
 Using the Plugin

 		
 Example Output

 		
 LKMClue Plugin

 		
 Using the Plugin

 		
 Example Output

 		
 Dwarf Plugin

 		
 Specification

 		
 Using the Plugin

 		
 Example Output

 		
 Miscellaneous

 		
 FAQ

 		
 Why ScanCode?

 		
 How is ScanCode different from Debian licensecheck?

 		
 How can I integrate ScanCode in my application?

 		
 Can I install ScanCode in a Unicode path?

 		
 The line numbers for a copyright found in a binary are weird. What do they mean?

 		
 Support

 		
 Documentation

 		
 Issue Tracker

 		
 Discussions

 		
 Join the conversation

 		
 Runtime Performance Reports

 		
 Versioning approach

 		
 Reference Docs

 		
 Overview

 		
 How does ScanCode detect licenses?

 		
 License Detection Updates

 		
 The Problem:

 		
 What is a LicenseDetection?

 		
 Chnagelog Summary

 		
 Change in License Data format: Resource

 		
 Change in License Data format: Package

 		
 Codebase level Unique License Detection

 		
 LicenseMatch Result Data

 		
 Only reference License related data

 		
 Supported package manifests and package datafiles

_images/planned.png

_images/scancode-toolkit-extract.png
Name A Date Modified Size Kind

zlib.tar.gz Feb 8, 2016, 4:04 PM 28 KB gzip compressed archive
» [zlib.tar.gz-extract Today, 4:18 PM -- Folder

_images/output_spdx_tv_licenses.png
Extracted Licenses

LicenseID: LicenseRef-cnr-no

LicenseComnent: <text>See details at https://github. con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/Licenses/cnr-no. yml
</text>

ExtractedText: <text>See details at https://github.con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/Licenses/cnr-no. yml
</text>

LicenselD: LicenseRef-gpl-2.0-plus-ada

LicenseComnent: <text>See details at https://github. con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/Licenses/gpl-2.0-plus-ada. yml
</text>

ExtractedText: <text>See details at https://github. con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/ Licenses/gpl-2.0-plus-ada. ynl
</text>

_images/output_spdx_tv_package.png
Package

Packageliane: samples
PackageDownloadLocation: NOASSERTION

PackageVerificationCode: ba63ad293ba27f95c8aa32ab097dc99895F35078
PackageLicenseDeclared: NOASSERTION

PackageL i censeConcluded: NOASSERTION

PackageL i censeInfoFronFiles: Apache-1.1
PackageLicenseInfoFronFiles: Apache-2.6

PackageLicenseInfoFronFiles: BSL-1.0
PackageLicenseInfoFronFiles: CC-BY-2.5
PackageLicenseInfoFronFiles: CPL-1.0

PackageLicenseInfoFronFiles: LGPL-2.1+

PackageL i censeInfoFronFiles: MIT
PackageLicenseInfoFronFiles: Zlib

PackageLicenseInfoFronFiles: LicenseRef-cnr-no
PackageLicenseInfoFronFiles: LicenseRef-gpl-2.6-plus-ada
PackageLicenseInfoFronFiles: LicenseRef-jboss-eula
PackageLicenseInfoFronFiles: LicenseRef-public-domain
PackageCopyrightText: <text>(c) 2004 by Henrik Ravn

(c) Copyright Henrik Ravn 2004

Copyright (c) 1991, 1999 Free Software Foundation, Inc.

Copyright (c) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly.

Copyright (c) 1995-2008 Mark Adler

Copyright (c) 1995-2016 Jean-loup Gailly, Brian Raiter and Gilles Vollant.
Copyright (c) 1995-2611 Mark Adler

Copyright (c) 1995-2012 Jean-loup Gailly

_images/scancode-toolkit-static-html1.png
location start end what value
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c | 1 3 copyright | Copyright (c) 1995-2011 Mark Adler
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c | 3 3 license | zlib
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h 4 4 copyright | Copyright (c) 1995-2013 Jean-loup Gailly and Mark Adler
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h 6 20 license | zlib
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h 1 3 copyright | Copyright (c) 1995-2013 Jean-loup Gailly.
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h 3 3 license | zlib
samples/JGroups/EULA 3 108 | license jboss-eula
samples/JGroups/EULA 104 | 104 | copyright | Copyright 2006 Red Hat, Inc.
samples/JGroups/LICENSE 1 502 | license lgpl-2.1-plus
samples/JGroups/LICENSE 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/LICENSE 426 |433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/licenses/apache-1.1.txt 2 56 license apache-1.1
samples/JGroups/licenses/apache-1.1.txt 4 5 copyright | Copyright (c) 2000 The Apache Software Foundation.
samples/JGroups/licenses/apache-2.0.txt 2 202 | license apache-2.0
samples/JGroups/licenses/bouncycastle.txt 5 5 copyright | Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
samples/JGroups/licenses/bouncycastle.txt 7 18 license | mit
samples/JGroups/licenses/cpl-1.0.txt 1 1 license | cpl-1.0
samples/JGroups/licenses/Igpl.txt 1 502 | license lgpl-2.1-plus
samples/JGroups/licenses/Igpl.txt 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/licenses/Igpl.txt 426 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/src/FixedMembershipToken.java | 2 5 copyright | Copyright 2005, JBoss Inc.

_images/scancode-toolkit-static-html2.png
Package Information

type packaging primary_language
samples/arch/zlib.tar.gz | plain tarball | archive None
Licenses
key short_name category owner dejacode_url homepage_url
apache- Apache https://enterprise.dejacode.com/license_library/Demo/apache-
14 Apache 1.1 | Attribution | Software 14/ * . . http://www.apache.org/licenses/
. Foundation | ——
apache- Apache https://enterprise.dejacode.com/license_library/Demo/apache-
20 Apache 2.0 | Attribution | Software 2.0/ * . . http://www.apache.org/licenses/
. Foundation | ==
11)000 Sh Boost 1.0 Attribution | Boost :ﬂ'kop/s://enterprlse.de]acode.com/llcense library/Demo/boost: http://www.boost.org/users/license.html
cc-by- CC-BY-2.5 | Attribution Creative https://enterprise.dejacode.com/license library/Demo/cc-by- http://creativecommons.ora/licenses/by/2.5/
25 Commons | 2.5/
CMR -
CMR Christian
CMr-No | erce Attribution | Michelsen | https:/enterprise.dejacode.com/license_library/Demo/cmr-no/
Research
AS
cpl-1.0 [CPL1.0 Em{;ﬂ 1BM https://enterprise.dejacode.com/license_library/Demo/cpl-1.0/ | http://www.eclipse.org/legal/cpl-v10.html
1-2.0- GPL 2.0 or
gﬁjs_' later with Copyleft Dmitriy https://enterprise.dejacode.com/license _library/Demo/gpl-2.0-
z A Ada Limited Anisimkov | plus-ada/
exception
jooss- | JBoss Proprietary | JBoss https://enterprise.dejacode.com/license_library/Demo/jboss-
eula EULA Free Community | eula/
Free
Igpl-2.1- | LGPL 2.1 Copyleft Software https://enterprise.dejacode.com/license library/Demo/lgpl-2.1- | http:/www.gnu.org/licenses/old-
plus or later Limited Foundation | plus/ licenses/Igpl-2.1-standalone.html
(FSF)

_static/plus.png

_static/file.png

_static/minus.png

_images/files_sample.png
samples

4 myarch

2lib tar gz-extract
2lib.targz

4 1 JGroups

b i licenses

b stc
b EULA
I LICENSE
4 mzib
i ada
i douzlib
i gcc_gvmat6a
infbacka
iostream2
| adler32c
| deflatec
| deflate.n
& zibh
& 2utilc
& zutith
README
screenshot.png

_images/json_ugly.png
(venv-scan3.1.1) ayansm@AyanUbuntuDell:~/Desktop/GSoD/scancode-toolkit-versions/scancode-toolkit-3.1.1$./scancode -clpieu --json - samples
setup plugins. ..

collect file inventory...

scan files for: info, licenses, copyrights, packages, emails, urls with 1 process(es).
[HHHHHHARHR AR] 36

{"headers":[{"tool_name" 3.1.1","options”:{"input":["samples"]
son":"-","--license":true, strue,"--url":true},"notice":"Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\NOR
[CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney
\nfor any legal advice.\nscancode is a free software code scanning tool fron nexs Inc. and others.\nvisit https://github.con/nex8/scancode-toolkit/ fo
r support and download.","start._f
files_count”:36}}],"files
null,"nd5" :null, "ni null,"file_typ
is_source":false,"is_: false,"license
[1,"files_count”:36,"dirs_count X
‘extension' ,"size":236,"date":"2019-062-12","shal": "2e07e32c52d607204fad196052d70e3d18fb8636"
text/plain”,"file_type ,"progranming_language”:null,"is_binary s_archive:false,"is_media
se,"ts_script":false,"licenses":[],"license_expressions”:[], 3B [1,"authors":[],"packages”:[], "email
/zlib.net/z1ib-1.2.8.tar.gz","start_line":3,"end_line":3},{"url": "http://master.dl. sourceforge.net/project/javagroups/IGroups/2.16.0. GA/JGrnups 2.10.0
-GA.src.zip","start_line nd_line":4}],"files_count":e,"dirs_count ,"scan_errors":[]},{"path": "samples/screenshot.png”, "type":"fi
ase_name":"screensho’ 919-02-12", "sha1":"01ff4blde®bc6c75c9ccabed6c80c1802d69
6ef5390777147423c98b42a6a25e57: NG image data, 28806 x 1666, 8-bit/color RGB, non-interlaced
ull,"is_binary false,"licenses

1,"authors [1,"ematls’
samples /README", " type' ,"base_name
,"md5": "effc6856ef8529250fb1a470792b3F3;

false,"is_media
[1,"emails
rch

ull,"progranming_language” i :false
icense_expressions":[],"copyrights" [1,"authors
scan_errors”:[]},{"path": "samples/arch/zlib.tar.gz","type" libAtarAgZ ,"base_name
2019-82-12","shal":"576foccfe534d7f5ff5d6400078d3c6586de3abd’ "20b2370751abfcO8bb3556c1d8114b5: |
gzip compressed data, last modified: Wed Jul 15 14:38:19 2015, from Unix","programming_language":null, isibinary true,"is
s_media :false,"is_script”:false,"licenses":[],"license_expressions”:[],"copyrights":[],"holders

|_text":false,"is_archive

1,"authors":[], "packages Files_count dirs_count":e,"size_count":0,"scan_errors”:[1},{"path": "samples/arch/zlib.tar.gz-e
Ixtract”, i z1ib. tar.gz-extract o, "date":null,"sha1” :null, "nd5" :null
Inime_type”:null,"file_type": :false is_source”:false

[1,"holders":[],"authors":[], " package:
amples/arch/zlib.tar.gz-extract/zlib-1.2.
nuLl, "nd5" :null, "mime_type” :null,"file._type"

[1,"license_expressions":[],"copyrights"

13, {"patl
,"date":null,"sha1"

is_script”
dirs_count

false, "license:

null, "programming_language” :null, "is_binar

_images/done.png

_images/extractcode.png
i samples
awarch
2w 2lib.tar. gz-extract

o 2lib-1.2.8
& adiers2c
& zibh
B ilh
2lib.targz

_images/output_csv.png
10

11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27

Resource, type,name,base name,extension,date,size,shal,md5,files count,mime type,file type,programming language,is binary,is text,is archive,is media,is source,i

s_script,scan errors, license key,license score,license short name,license category,license owner,license homepage url,license text url,license reference
url, license _spdx license key,license spdx url,matched rule identifier,matched rule license choice,matched rule licenses,copyright,copyright holder,author,

enail,url,start _line,end line,package type,package name,package version,package primary language,package summary,package description,package size,package
release date,package homepage url,package notes,package _bug tracking url,package vcs repository,package copyright top level

7samples/screenshot.png, file,screenshot.png, screenshot, .png, 2017-09-22, 622754, 01 f4b1de0bc6C75c9ccabed6c80C1802d6976d4, bbef5a0077714742398b42a6a25e57a, , image/

png,"PNG image data, 2880 x 1666, 8-bit/color RGB, non-interlaced”,,True,False,False, True,False,FalSe, ,,, . 1y ossrssssrsrssnssssnsssis

/samples/README, file,README, README, ,2019-09-18, 238, 598b3cadda718999199d9acbb763467dc31c9a6, f089167711dfa70aa0460726cbd5cda, , text/plain, ASCIT

text, ,False, True, False, False,False,FalSe, ,, . .1 ssisrsssssssssnnsinssiis

/SAMDLES/README, 114111 0ssss0sssssssssssssssssss NEtp://2lib net/21ib-1.2.8.tar.02,3,3,,,,,0 0000000

/SAMDLES/README, , 1,111 11105s1115ssssssssssssssssss,NED://master.dl.sourceforge.net/project/javagroups/JGroups/2.10.0.GA/

J